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Disclaimer

No references in this talk.

Apologies to the many experts in the audience! 

For references I direct you to the papers (or feel free to ask me later)



Symmetries and RG flow
Key question in the theory of quantum fields: establish relations between 
microscopic and macroscopic physics

Microscopics — High Energies

Macroscopics — Low Energies

Renormalization flow

Constraints?

Renormalization is (in principle) determined but also very hard to compute
→ Symmetries: one of the few known tools to constrain renormalization

(e.g. quarks: “easy” to compute)

(e.g. hadrons: “easy” to measure)

TODAY’S TALK: implications of generalized (non-invertible) symmetries to 
constrain low energy gapped phases of 4d QFTs



Generalized Symmetries
FACT: quantum fields have extended operators of various dimensions

e.g. Wilson lines, Vortex strings, etc..

Generalized symmetries introduced to capture corresponding quantum #s

p-form 
symmetry ⟷ charge of operator 

of dimension p linking action
(generalized Gauss’s law)
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Generalized symmetries introduced to capture corresponding quantum #s

p-form 
symmetry ⟷ charge of operator 

of dimension p linking action
(generalized Gauss’s law)

Consider continuous case

∂μJ[μν1..νp] = 0 exp (iθ∫Sd−p−1

J[μν1..νp]ϵμν1...νpνp+2...νd
dSνp+2...νd)

Eg. Maxwell field:

∂μF[μν] = 0 ∂μF̃[μν] = 0

→

U(1)(1)
e × U(1)(1)

m→

→ U(1)(p)
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Generalized symmetries

Topological operators/defects
define

Claim:

TASK: characterize the subsector of the QFT of interest consisting of 
topological operators and defects and study their higher structure and 
action on the non-topological operators and defects

Two approaches:

• Worldvolume approach

• Bulk/boundary system

Compute explicitly the topological operators that one 
can couple to the theory

Topological Symmetry Theory or SymTFT
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Topological Operators from Bulk/Boundary

Consider the case of FINITE generalized symmetries. 

If symmetries are anomalous: anomaly inflow  bulk/boundary system→

Recovers topological defects and their action — here we see e.g. the linking

Topological 
boundary 
condition

Isomorphism

Original theory of interestBulk topological field theory
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Topological Interfaces from Bulk/Boundary

Topological 
boundary 
condition

Isomorphism

This interface is non-invertible when is non-trivial

Original theory 
of interest

Bulk topological field theory

If moreover, duality isomorphism→

Non-invertible duality symmetry
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Topological Interfaces from Bulk/Boundary

Non-invertible duality symmetry

1.

2.

3.

Moreover, notice that the non-invertible duality 
symmetry so constructed is not a genuine defect of the 
SymTFT

→ Needs a new SymTFT by gauging 0-form symmetry

Need SymTFT with 0-form symmetry 
such that these 3 conditions are met



The 4d Case
This construction applies to 4d QFTs with 1-form symmetries

e.g. Maxwell theory, various supersymmetric gauge theories with EM duality, more general 4d N=2 QFTs,…

It can be proven that the SymTFT in this case is always equivalent to a 
topological BF theory with gauge group

With topological surface defects with braiding
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The 4d Case - continued
In this case we have a bulk 0-form symmetry arising from

And one can check conditions 1,2,3 outlined above are met.

Gauging bulk 0-form symmetry   → more topological defects with braiding

Original twist defects + Wilson lines of the gauged 0-form symmetry
  → Gauged SymTFT has more boundary conditions!

Crossing action on surface defects is needed to classify these 
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Gapped phases with Non-Invertible symmetry in 4d

invariant Lagrangian sugroups

 of

Easy to calculate!

Example: if m,k odd and 

 

Invariant Lagrangian 
subgroups exist if -1 is 
not a power of p mod n

det(x − g) = Φn(x)m p ∤ m

These methods lead to a first coarse 
classification of gapped phases with finite 
non-invertible symmetries

Can we say more about these?

Back to the SymTFT!



Gapped phases with Non-Invertible symmetry in 4d
Can the gapped phase be trivial? Consider the intersection:

If there are no charged line operators the phase is trivial otherwise we can 
have a topological order
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How about spontanous symmetry breaking of the non-invertible duality 
symmetries?



SSB of Non-Invertible symmetry in 4d
How about spontanous symmetry breaking of the non-invertible duality 
symmetries?

In the gapped case: encoded in the further boundary conditions of the SymTFT 
with the 0-form symmetry gauged! 

Arise from orbits of gapped boundary conditions of the original SymTFT 

Structure of the different vacua is encoded in the overlaps
This reproduces nicely the structure of vacua of various supersymmetric gauge theories (e.g. N=1*)



Possible Generalizations
We have just started analyzing the structure of phases with non-invertible 
duality symmetries

The case of non-finite non-invertible symmetries is richer 

  → Matching higher structures inform the stability of solitons for 
non-linear sigma models

  → Classification of corresponding gapped phases is missing

Possible application of SymTFT for continuous symmetries 

  → Interesting in particular the application to SSB which for 
continuous symmetries is radically different



Conclusions
We have discussed an example of applications of topological field theory 
techniques to inform questions about dynamics of gauge theory

Symmetries with a non-trivial higher structure are extremely constraining: 
so constraining the we can classify the possible gapped phases and 
determine coarsely the structure of the corresponding vacua: trivial (SPTs)  
or non-trivial (Topological Orders)

Many open questions remain: our classification is a classification of 
possibilities — how to inform the dynamics of SSB of non-invertible 
symmetries?

In the classification: new boundary conditions corresponding to models with 
duality symmetries that are gauged. Are these realized?

e.g. Self-dual Maxwell theory?   Argyres-Douglas fixed points?
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determine coarsely the structure of the corresponding vacua: trivial (SPTs)  
or non-trivial (Topological Orders)

Many open questions remain: our classification is a classification of 
possibilities — how to inform the dynamics of SSB of non-invertible 
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In the classification: new boundary conditions corresponding to models with 
duality symmetries that are gauged. Are these realized?

e.g. Self-dual Maxwell theory?   Argyres-Douglas fixed points?

Thank you for your attention!


