The Universe is Not Statistically Isotropic

Glenn Starkman Case Western Reserve University PASCOS-2025, Durham UK

Undergraduates:

Joann Jones (Chicago), Ananda Smith (MIT);

M. Cogliano, V. Ford, S. Gratz, X. Lu, R. Shepherd, M. Wang

Graduate Students:

CWRU: Amirhossein Samandar, John Kushan

IFT: Mikel Martin, Joline Noltmann; Harvard: Catherine Petretti;

Postdocs/Research Scientists

George Alestas (IFT) Stefano Anselmi (Padua), Javier Carron (IFT), Jim Mertens (Toronto), Deyan Mihaylov (CWRU), Anna Negro (CWRU), Andrius Tomasiunas (IFT)

Faculty:

Y. Akrami, C. Copi, F. Cornet, A. Jaffe, A. Kosowsky, T. Pereira

Past:

S. Aiola, A. Bernui, N. Cornish, J. Eskilt, F. Ferrer, O. Gungor, J. Gurian, D. Huterer, L. Knox,

P. McDonald, C. Novaes, M. O'Dwyer, P. Petersen, S. Saha, D. Schwarz, D. Spergel Q. Taylor, V. Vardanyan, P. Vaudrevange, A. Yoho

Joline

NOLTMANN

Amirhossein SAMANDAR

Ananda SMITH

Javier CARRON DUQUE

Stefano ANSELMI

Deyan

MIHAYLOV

Anna NEGRO

Andrius TAMOŠIŪNAS

Yashar AKRAMI

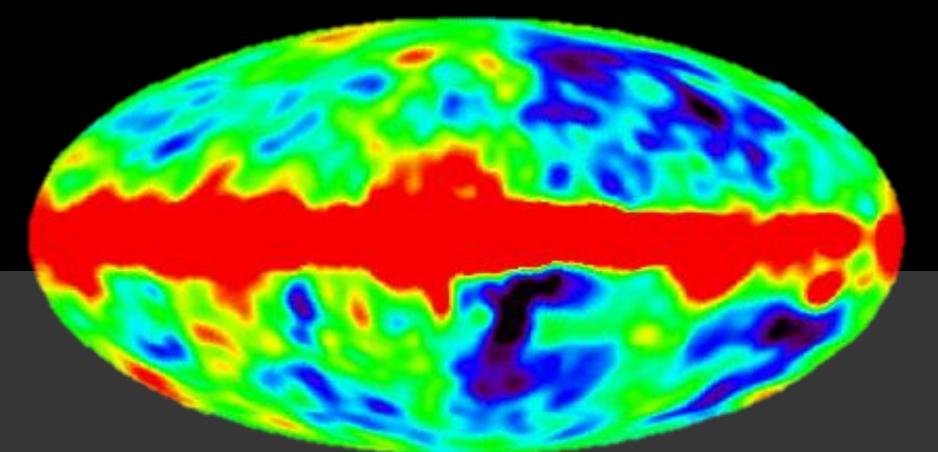
Craig

COPI

Fernando **CORNET-GOMEZ**

Andrew JAFFE

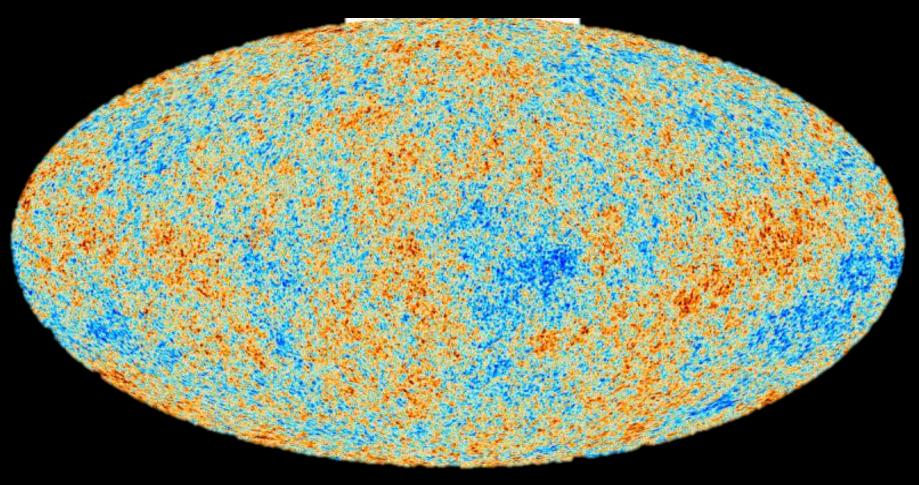
Arthur KOSOWSKY


Thiago

PEREIRA

Glenn **STARKMAN**

COBE - DMR


NASA/COBE-DMR science team

WMAP

NASA/WMAP Science team

Planck

ESA/Planck Science team

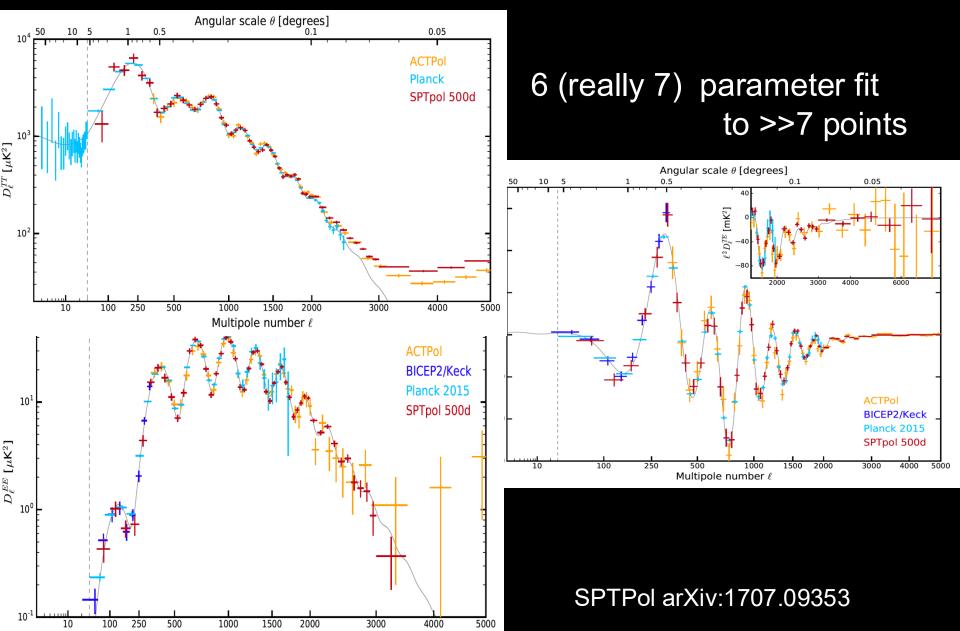
SPT

SO

Angular Power Spectrum

$\Delta \mathsf{T} = \sum_{\ell \, \mathrm{m}} \mathsf{a}_{\ell \, \mathrm{m}} \, \mathsf{Y}_{\ell \, \mathrm{m}}(\theta, \varphi)$

Angular Power Spectrum $\Delta T = \sum_{\ell m} a_{\ell m} Y_{\ell m}(\theta, \phi)$


Standard model for the fluctuations (inflation):

- Sky is statistically isotropic
- $a_{\ell m}$ are independent Gaussian random variables

$$< a_{\ell m} a^*_{\ell' m'} > = C_{\ell} \delta_{\ell \ell'} \delta_{mm'}$$

ALL(~) interesting information is contained in: $\hat{C}_{\ell} = (2\ell + 1 \hat{\mathcal{Q}}_{\ell}^{1} \sum_{m} |a_{\ell m}|^{2}$

Angular Power Spectrum

 Astonishing experimental accomplishment
 Remarkable agreement with theory

Standard Model for fluctuations (inflation):

- Sky is statistically isotropic
- a_{em} are independent (very nearly) Gaussian random variables

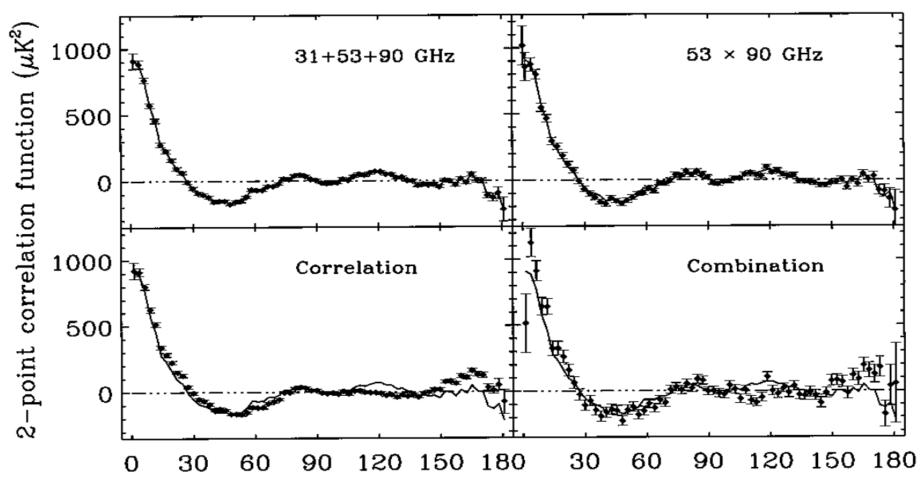
$$< a_{\ell m} a^*_{\ell' m'} > = C_{\ell} \delta_{\ell \ell'} \delta_{mm'}$$

ALL interesting information is contained in: C_{ℓ}

Shouldn't we check?!

Outline Troubles in (iso)tropical paradise:

- large-angle problem: $C(\theta > 60^{\circ}) \simeq 0$
- low-ℓ alignments
- hemispheres
- parity


Bottom line:

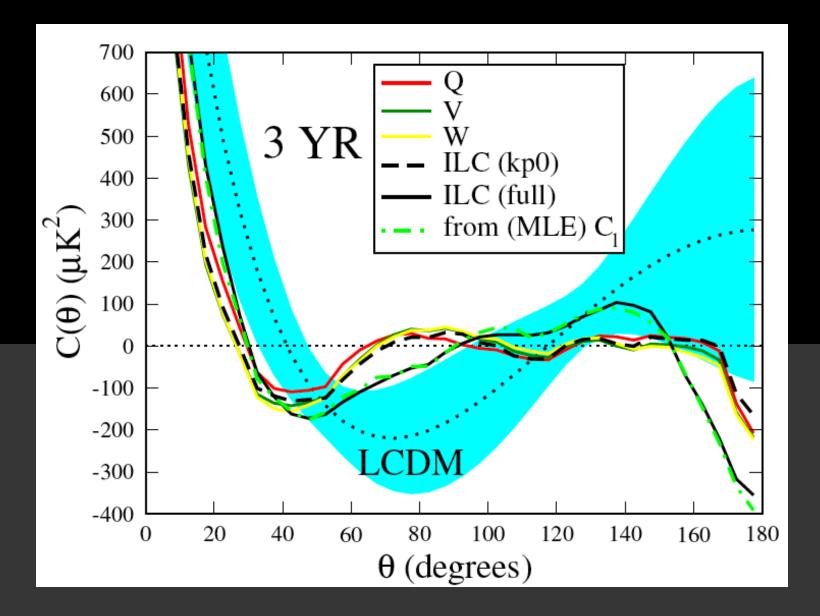
>5σ evidence against GRSI LCDM realization in ways that demand statistical anisotropy.

Promise-of-topology musings

TWO-POINT CORRELATIONS IN THE COBE¹ DMR FOUR-YEAR ANISOTROPY MAPS

G. HINSHAW,^{2, 3} A. J. BANDAY,^{2, 4} C. L. BENNETT,⁵ K. M. GÓRSKI,^{2, 6} A. KOGUT,² C. H. LINEWEAVER,⁷ G. F. SMOOT,⁸ AND E. L. WRIGHT⁹ Received 1996 January 9; accepted 1996 March 21

Angular separation (degrees)


Angular Correlation Function C(θ)

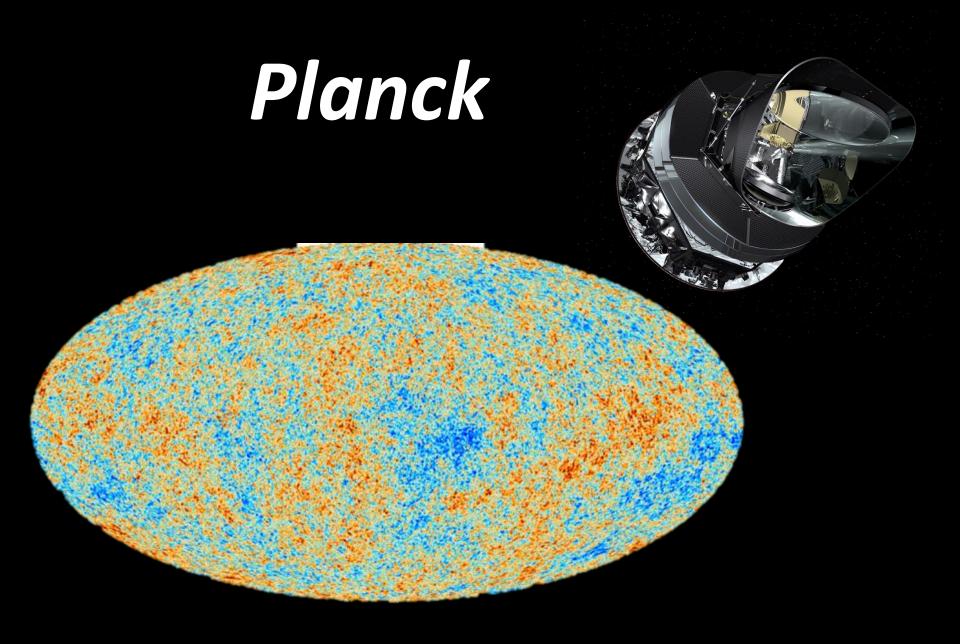
$C(\theta) = \langle T(\Omega_1)T(\Omega_2) \rangle_{\Omega_1.\Omega_2 = \cos\theta}$

But $C(\theta) = \sum_{I} C_{I} P_{I}(\cos(\theta))$

 \Rightarrow Same information as C_l, just differently organized

Two-point angular correlation function

Is the Large-Angle Anomaly Significant?


One measure (WMAP1):

$S_{1/2} = \int_{-1}^{1/2} [C(\theta)]^2 d \cos \theta$

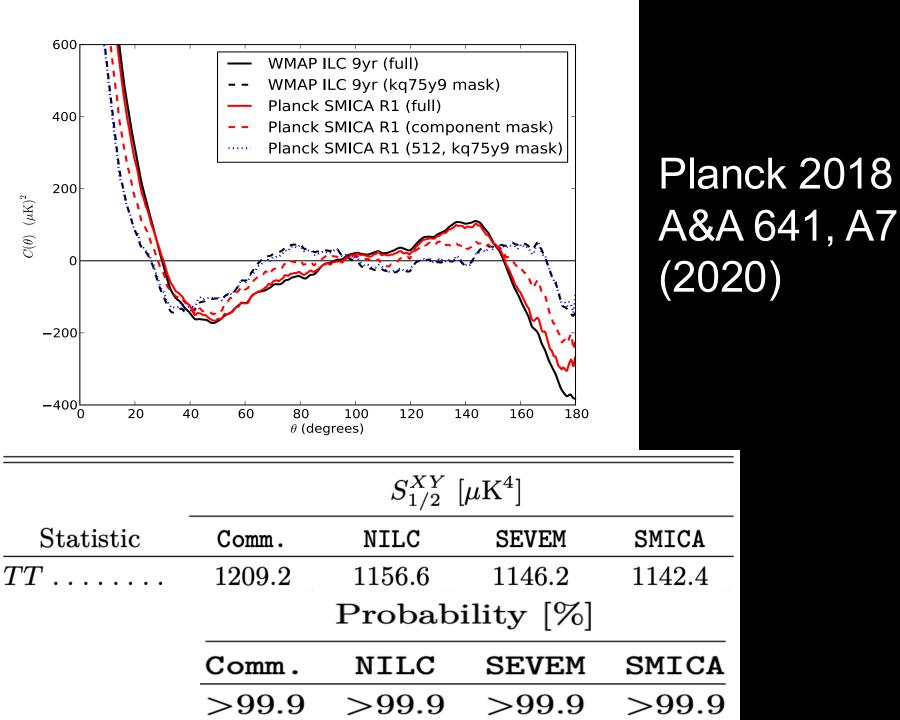
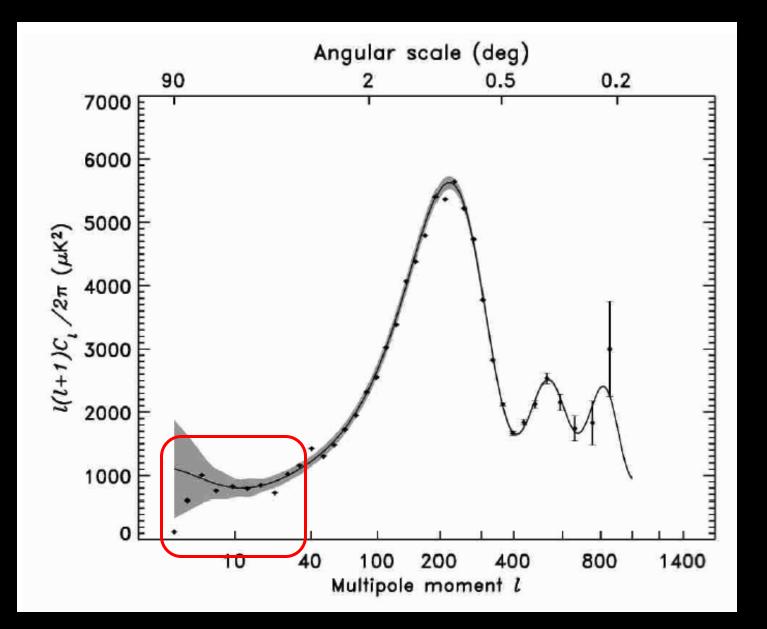

WMAP statistics of $C(\theta)$

Table 1. The C_{ℓ} calculated from $C(\theta)$ for the various data maps. The WMAP (pseudo and reported MLE) and best-fit theory C_{ℓ} are included for reference in the bottom five rows.

Data Source	$_{(\mu {\rm K})^4}^{S_{1/2}}$	$\begin{array}{c} P(S_{1/2}) \\ (\text{per cent}) \end{array}$	${6 C_2/2\pi \over (\mu{ m K})^2}$	${12 C_3/2\pi \over (\mu{ m K})^2}$	$^{20\mathcal{C}_4/2\pi}_{(\mu\mathrm{K})^2}$	${30 {\cal C}_5/2\pi \over (\mu{ m K})^2}$
V3 (kp0, DQ)	1288	0.04	77	410	762	1254
W3 (kp0, DQ)	1322	0.04	68	450	771	1302
ILC3 (kp0, DQ)	1026	0.017	128	442	762	1180
ILC3 (kp0), $C(> 60^{\circ}) = 0$	0	—	84	394	875	1135
ILC3 (full, DQ)	8413	4.9	239	1051	756	1588
V5 (KQ75)	1346	0.042	60	339	745	1248
W5 (KQ75)	1330	0.038	47	379	752	1287
V5 (KQ75, DQ)	1304	0.037	77	340	746	1249
W5 (KQ75, DQ)	1284	0.034	59	379	753	1289
ILC5 (KQ75)	1146	0.025	81	320	769	1156
ILC5 (KQ75, DQ)	1152	0.025	95	320	768	1158
ILC5 (full, DQ)	8583	5.1	253	1052	730	1590
WMAP3 pseudo- C_{ℓ}	2093	0.18	120	602	701	1346
WMAP3 MLE C_{ℓ}	8334	4.2	211	1041	731	1521
Theory3 C_{ℓ}	52857	43	1250	1143	1051	981
WMAP5 C_{ℓ}	8833	4.6	213	1039	674	1527
Theory 5 C_{ℓ}	49096	41	1207	1114	1031	968


ESA/Planck Science team

Statistics of $C(\theta)$

 0.03-0.1% of realizations of the concordance model of inflationary ACDM have so little <u>cut sky</u> large-angle correlation !

and most of those have all low- ℓC_{ℓ} small

Conspiracy: how the sky minimizes S_{1/2}

To obtain $S_{1/2} < \sim 1000$ with the observed C_{ℓ} requires correlating C_2 , C_3 , $C_4 \& C_5!$

It's not the inflaton potential: violation of GRSI

Even if we replaced all the theoretical C_ℓ by their measured values up to ℓ=20, cosmic variance would give only a 3% chance of recovering so little correlation in a particular realization...
and most of those would be much poorer fits to that theory than is the current data

Understanding small S_{1/2}

- 1. "Didn't that go away?"
- 2. "I never believe a posteori statistics."
- 3. Cosmic variance -- "I never believe anything less than a (choose one:) $5\sigma 10\sigma 20\sigma$ result."
- 4. "Inflation can do that"

5. New physics that correlates C_{l} 's $\langle C_{\ell}C_{\ell'}\rangle \not\ll \delta_{\ell\ell'}$ $\implies \langle a_{\ell m}a_{\ell' m'}^{*} \rangle \neq C_{\ell}\delta_{\ell\ell'}\delta_{mm'}$

Beyond C_e:

Searching for Departures from Gaussianity/Statistical Isotropy

- angular momentum dispersion axes (da Oliveira-Costa, et al.)
- BiPoSH coefficients (Souradeep *et al.*)
- cold hot spots, hot cold spots (Larson and Wandelt)
- dipolar modulations
- genus curves (Park)
- hemispherical asymmetries (Eriksen et al., Hansen et al.)
- Land & Magueijo scalars/vectors
- multipole vectors (Copi, Huterer, Schwarz, GDS; Weeks; Seljak and Slosar; Dennis)
- parity anomaly
- spherical Mexican-hat wavelets (Vielva et al.)
- your favourite technique/anomaly that I missed

Alignments ...

Multipole Vectors

- Q: What directions are associated w the ℓ th multipole: $\Delta T_{\ell}(\theta, \phi) \equiv \sum_{m} a_{\ell m} Y_{\ell m}(\theta, \phi) ?$ Dipole (ℓ = 1) : $\sum_{m} a_{1m} Y_{1m}(\theta, \phi) = A^{(1)} \hat{u}_{x}^{(1,1)} .(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$
 - Advantages:
 - 1) $\hat{\mathbf{u}}^{(1,1)}$ is a vector, $\mathbf{A}^{(1)}$ is a scalar
 - 2) Only $A^{(1)}$ depends on C_1

Multipole Vectors

General ℓ , write:

 $\sum_{m} a_{\ell m} Y_{\ell m} (\theta, \phi) \approx A^{(\ell)} [(\hat{u}^{(\ell, \ell)} \cdot \hat{e}) \dots (\hat{u}^{(\ell, \ell)} \cdot \hat{e}) - \text{all traces}]$

$$\{\{a_{\ell m,} m = -\ell, \dots, \ell\}, \ell = (0, 1,)2, \dots\} \Rightarrow \\ \{A^{(\ell)}, \{\hat{u}^{(\ell, i)}, i = 1, \dots, l\}, \ell = (0, 1,)2, \dots\}$$

Advantages: 1) $\hat{\mathbf{u}}^{(\ell,i)}$ are vectors, $\mathbf{A}^{(\ell)}$ is a scalar 2) Only $\mathbf{A}^{(\ell)}$ depends on C

Maxwell Multipole Vectors

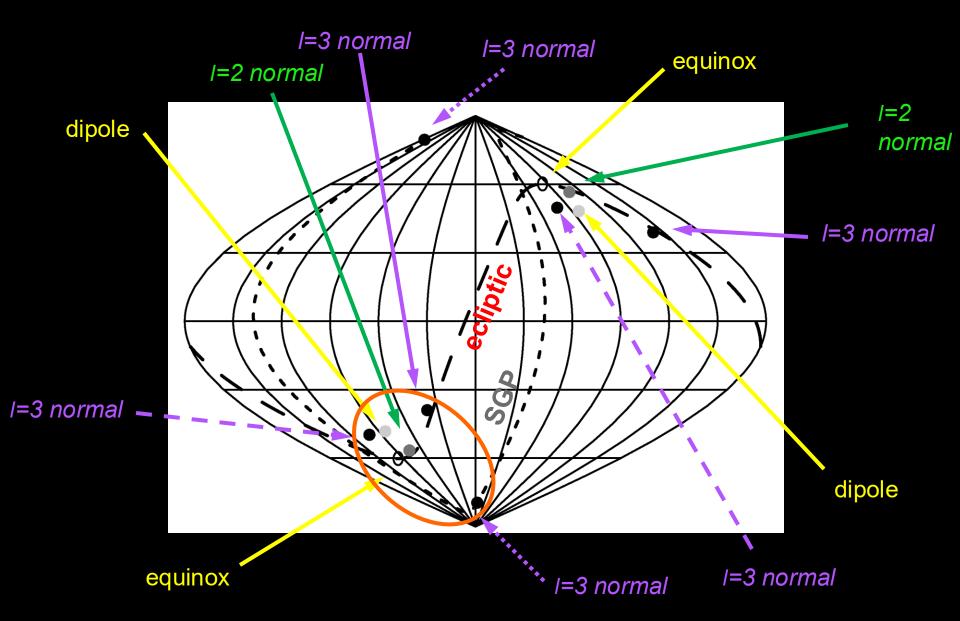
$$\sum_{m} a_{\ell m} Y_{\ell m}(\theta, \phi)$$

$$= \left[(\mathbf{u}^{(\ell, l)} \cdot \nabla) \dots (\mathbf{u}^{(\ell, \ell)} \cdot \nabla) \mathbf{r}^{-1} \right]_{\mathbf{r}=1}$$

J.C. Maxwell, *A Treatise on Electricity and Magnetism*, v.1, 1873

Area Vectors

Notice:

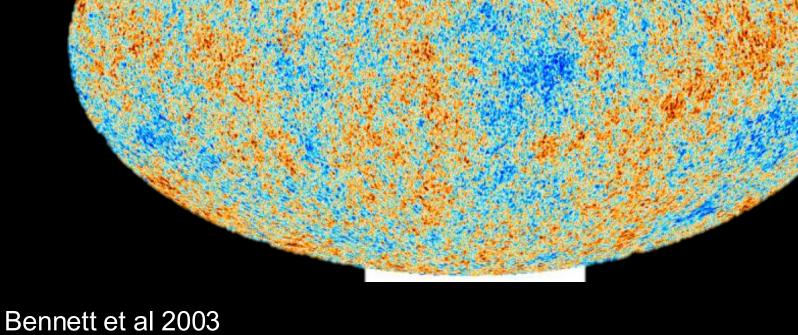

- Quadrupole has 2 vectors, *i.e.* quadrupole is a plane
- Octopole has 3 vectors, *i.e.* octopole is 3 planes

Suggests defining:

 $\mathbf{w}^{(\ell,i,j)} \equiv (\hat{\mathbf{u}}^{(\ell,i)} \times \hat{\mathbf{u}}^{(\ell,j)})$ "area vectors"

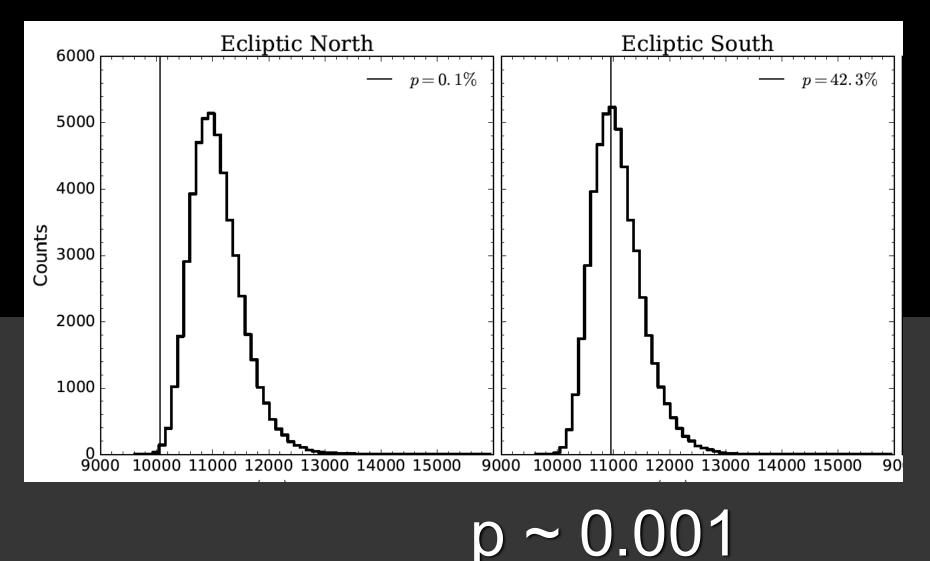
Carry some, but not all, of the information

$\ell = 2\&3$ Area Vectors

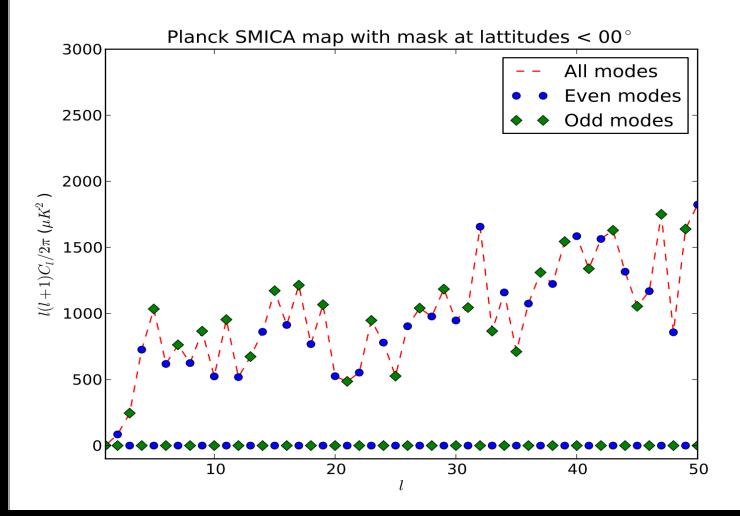

Quadrupole plane & 3 octopole planes are aligned with one another

p-value of the quadrupole & octopole planes being so aligned: (0.1-0.6)%

Power asymmetry Dipole modulation


Low Northern Variance

Marcio O'Dwyer (with GDS, Copi, Knox)


Eriksen et al 2003, and many others

SMICA N vs S variance

Parity anomaly

Parity anomaly

Plot by J. Muir, U. Pittsburgh

With so many anomalies, what do we do?

In preparation: Large-angle anomalies of the CMB and the evidence against statistical isotropy, Physics Reports

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 19 Oct 2023]

The Universe is not statistically isotropic

Joann Jones, Craig J. Copi, Glenn D. Starkman, Yashar Akrami

The standard cosmological model predicts statistically isotropic cosmic microwave background (CMB) fluctuations. However, several summary statistics of CMB isotropy have anomalous values, including: the low level of large-angle temperature correlations, $S_{1/2}$; the excess power in odd versus even low- ℓ multipoles, R^{TT} ; the (low) variance of large-scale temperature anisotropies in the ecliptic north, but not the south, σ_{16}^2 ; and the alignment and planarity of the quadrupole and octopole of temperature, S_{QO} . Individually, their low *p*-values are weak evidence for violation of statistical isotropy. The correlations of the tail values of these statistics have not to this point been studied. We show that the joint probability of all four of these happening by chance in Λ CDM is likely $\leq 3 \times 10^{-8}$. This constitutes more than 5σ evidence for violation of statistical isotropy.

Four "representative" anomaly statistics:

- $\mathbf{S}_{1/2}$ lack of large-angle correlations, $p \simeq 10^{-3}$
- \mathbf{R}_{TT} odd-parity preference, $p \simeq 0.01 0.05$
- σ_{16}^2 low northern variance, $p \simeq (2 4) \times 10^{-3}$
- S_{QO} quadrupole-octupole alignment, $p \simeq 10^{-(2-4)}$ in Planck 2018 Commander, NILC, SEVEM, SMICA

Four "representative" anomaly statistics:

- $\mathbf{S}_{1/2}$ lack of large-angle correlations, $p\simeq 10^{-3}$
- \mathbf{R}_{TT} odd-parity preference, $p \simeq 0.01 0.05$
- σ_{16}^2 low northern variance, $p \simeq (2 4) \times 10^{-3}$
- S_{QO} quadrupole-octupole alignment, $p \simeq 10^{-(2-4)}$ in Planck 2018 Commander, NILC, SEVEM, SMICA

But are they correlated in the <u>tails</u> of their pdfs?

But are the anomalies (tails) correlated?

10⁸ realizations of CMB in best fit LCDM

Stat.	Value	$S_{1/2}$	R^{TT}	σ_{16}^2	S_{QO}	
Commander						
$S_{1/2}$	1272	1.5×10^{-3}	imes 0.6	$\times 27$	$\times 1.3$	
R^{TT}	0.7896	2.8×10^{-5}	3.0×10^{-2}	$\times 1.1$	$\times 1.0$	
σ_{16}^2	617.6	1.2×10^{-4}	$1.0 imes 10^{-4}$	3.1×10^{-3}	$\times 1.7$	
S_{QO}	0.7630	8.3×10^{-6}	1.3×10^{-4}	2.3×10^{-5}	4.4×10^{-3}	
NILC						
$S_{1/2}$	1218	1.3×10^{-3}	$\times 0.4$	$\times 29$	×1.3	
R^{TT}	0.7448	4.8×10^{-6}	1.0×10^{-2}	$\times 1.0$	×1.0	
σ_{16}^2	605.9	9.2×10^{-5}	2.4×10^{-5}	2.5×10^{-3}	$\times 1.9$	
S_{QO}	0.8203	6.3×10^{-7}	3.8×10^{-6}	1.8×10^{-6}	$3.9 imes 10^{-4}$	
			SEVEM			
$S_{1/2}$	1215	1.3×10^{-3}	$\times 0.8$	×33	$\times 1.2$	
R^{TT}	0.8194	5.6×10^{-5}	5.4×10^{-2}	imes 1.2	$\times 1.0$	
σ_{16}^2	583.4	6.5×10^{-5}	$1.0 imes 10^{-4}$	1.6×10^{-3}	$\times 1.5$	
S_{QO}	0.6547	6.3×10^{-5}	2.2×10^{-3}	9.8×10^{-5}	4.1×10^{-2}	
SMICA						
$S_{1/2}$	1257	$1.4 imes 10^{-3}$	$\times 0.6$	$\times 25$	×1.3	
R^{TT}	0.7906	2.8×10^{-5}	3.0×10^{-2}	$\times 1.1$	$\times 1.0$	
σ_{16}^2	631.0	1.4×10^{-4}	1.3×10^{-4}	3.9×10^{-3}	$\times 1.8$	
S_{QO}	0.8048	1.7×10^{-6}	2.9×10^{-5}	6.6×10^{-6}	9.2×10^{-4}	

	triplet correlations				
	$S_{1/2} ext{ and } \sigma_{16}^2$	S_{QO}			
	Commander				
$S_{1/2}$ and σ_{16}^2	1.2×10^{-4}	×1.7			
S_{QO}	9.1×10^{-7}	$4.4 imes 10^{-3}$			
	NILC				
$S_{1/2}$ and σ_{16}^2	9.2×10^{-5}	$\times 0.6$			
S_{QO}	2.0×10^{-8}	$3.9 imes 10^{-4}$			
	SEVEM				
$S_{1/2} \text{ and } \sigma_{16}^2$	6.5×10^{-5}	×1.3			
S_{QO}	3.6×10^{-6}	$4.1 imes 10^{-2}$			
	SMICA				
$S_{1/2}$ and σ_{16}^2	1.4×10^{-4}	$\times 2.1$			
S_{QO}	2.7×10^{-7}	$9.2 imes 10^{-4}$			

nainvise correlations

Are the anomalies correlated in LCDM?

Map	p_4	Correlation Factor	
Commander	$3 imes 10^{-8}$	51	
NILC	$< 1 \times 10^{-8}$	N/A	
SEVEM	$18 imes 10^{-8}$	40	
SMICA	1×10^{-8}	64	

Answer: only weakly

Conclusion:

Statistical isotropy is falsified at >5σ in CMB TT correlations!

Discuss:

You can't believe data without a model;
 you can't falsify a model without an alternative

Look elsewhere penalties
 i.e., you can always find anomalous statistics

 $\mathbf{S}_{1/2}$ – lack of large-angle correlations, $p \simeq 10^{-3}$

Look elsewhere:

• why 60°? why 180°? why $C(\theta)^2$? why $d \cos\theta$?

Look more closely:

• $p(S_{1/2}^{EE}) \sim 10^{-3}$

 σ_{16}^2 – low northern variance, $p \simeq 3 \times 10^{-3}$

Look elsewhere:

why N? why ecliptic? why N_{side}=16?

Look more closely: (Planck 2013 Isotropy and Statistics)

- ecliptic not optimum, galactic also ~0.003
- p(low (north) skewness, N_{side}=32) = 0.02-0.03
- p(high kurtosis, $N_{side}=32$) = 0.03

- \mathbf{R}_{TT} odd-parity preference, $p \simeq 0.01 0.05$
 - Look elsewhere:
 - why ℓ_{max} =27? why odd>even not even>odd

Look more closely:

• first 9 consecutive pairs $C_{2\ell+1} > C_{2\ell}$, $\ell = 1, ..., 9$; estimate $p \sim 2 \times 2^{-9} \approx 0.004$ (w. look-elsewhere)

- S_{QO} quadrupole-octupole alignment, $p \simeq 4 \times 10^{-(2-4)}$
- Look elsewhere:
- ??
- Look more closely:
- •"axis of evil" ℓ =2-5 (Land & Magueijo PRL95 (2005) 071301)
- "uncanny correlation of azimuthal phases between
 l=3 & *l*=5. (*ibid.*)
- •oriented areas *{*=2-8 inconsistent at 0.2% (Copi,
 - Huterer, Starkman PRD 70 (2004) 043515)

Look-elsewhere penalty estimate

- two ~3 σ combinations: S_{1/2} (0.0015), S_{QO}(0.004)
- two ~2 σ combinations: $\sigma_{16}^2 |S_{1/2}(0.08), R_{TT}(0.03)$
- Look elsewhere

•
$$\left[\frac{2\pi^{\frac{n}{2}}r^{n-1}}{\Gamma\left(\frac{n}{2}\right)}\right]\Delta r, n = 4, r = \sqrt{3 * 2}, \Delta r \approx 1/r$$
 : ~120

Stat.	Value	$S_{1/2}$	R^{TT}	σ_{16}^2	S_{QO}	
Commander						
$S_{1/2}$	1272	1.5×10^{-3}	imes 0.6	$\times 27$	×1.3	
R^{TT}	0.7896	2.8×10^{-5}	3.0×10^{-2}	$\times 1.1$	$\times 1.0$	
σ_{16}^2	617.6	1.2×10^{-4}	$1.0 imes 10^{-4}$	3.1×10^{-3}	$\times 1.7$	
S_{QO}	0.7630	8.3×10^{-6}	1.3×10^{-4}	2.3×10^{-5}	4.4×10^{-3}	

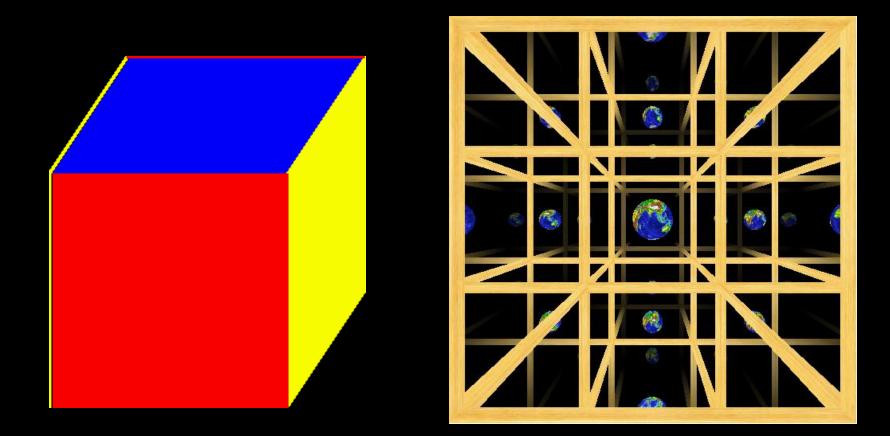
Look-more-closely reward estimate

- $p(S_{1/2}^{EE}) \sim 10^{-3}$
- p(low (north) skewness, $N_{side}=32$) ~ 0.03
- R_{TT} vs. $C_{2\ell+1} > C_{2\ell}, \ \ell = 1, \dots, 9; \mathsf{p} \sim \frac{2^{-8}}{0.03} \approx 0.13$
- Extra correlation w $\ell > 3 p \sim 0.1$

• Collectively < 10⁻⁶

The CMB sky is NOT a realization of a **Statistically Isotropic** physical system

The End?


New Models

New Models

Physics phenomena that break isotropy and are <u>already in our theory</u>:

Non-trivial cosmic topology

3-torus

Same idea works in three space dimensions

17 NON-TRIVIAL EUCLIDEAN TOPOLOGIES non-orientable

orientable

IFFI

3-Torus

Quarter Turn Space Half Turn Space

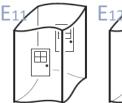
3 compact dimensions

Sixth Turn Space

Third Turn Space

Hantzsche-Wendt Space

Klein Space

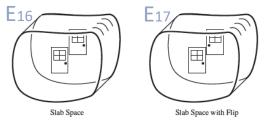

Klein Space with Vertical Flip

Klein Space with Horizontal Flip

Klein Space with Half Turn

Chimney Space

Chimney Space with Half Turn

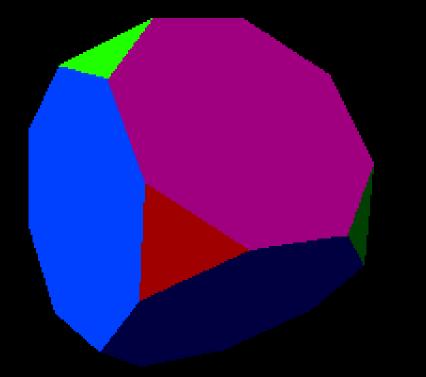

Chimney Space with Vertical Flip

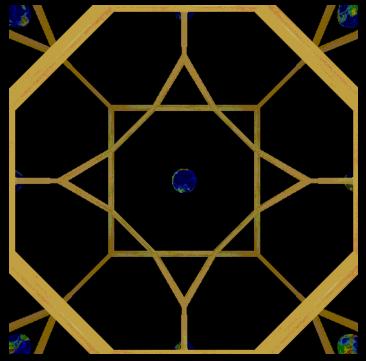
Chimney Space with Horizontal Flip

 \square

Chimney Space with Half Turn and Flip

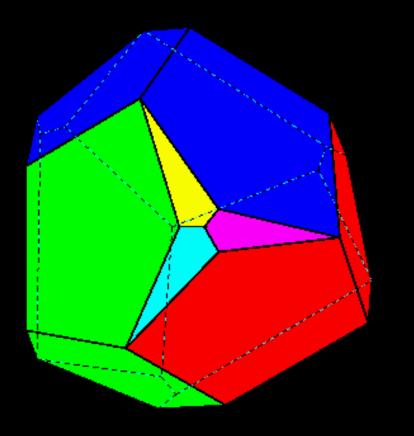
only 2 compact dimensions

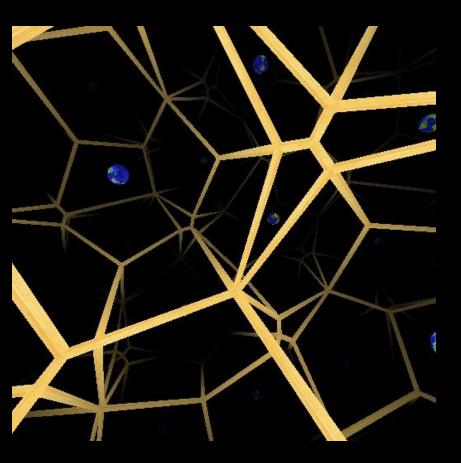



only 1 compact dimension

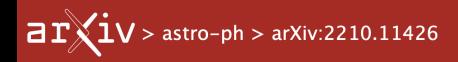
Riazuelo et al. Phys.Rev. D69 (2004) 103518 [arXiv:astro-ph/0311314]

spherical topologies


This example only works in spherical space



countable infinity of S³ topologies


infinite number of tiling patterns

This one only works in hyperbolic space

countable infinity of H³ topologies

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 20 Oct 2022 (v1), last revised 5 Mar 2024 (this version, v3)]

The Promise of Future Searches for Cosmic Topology

Yashar Akrami, Stefano Anselmi, Craig J. Copi, Johannes R. Eskilt, Andrew H. Jaffe, Arthur Kosowsky, Pip Petersen, <u>Glenn D. Starkman</u>, Kevin González-Quesada, Özenç Güngör, Deyan P. Mihaylov, Samanta Saha, Andrius Tamosiunas, Quinn Taylor, Valeri Vardanyan (COMPACT Collaboration)

The shortest distance around the Universe through us is unlikely to be much larger than the horizon diameter if microwave background anomalies are due to cosmic topology. We show that observational constraints from the lack of matched temperature circles in the microwave background leave many possibilities for such topologies. We evaluate the detectability of microwave background multipole correlations for sample cases. Searches for topology signatures in observational data over the large space of possible topologies pose a formidable computational challenge.

PRL132 (2024) 17, 17

Parallel session:

- Andrius Tomasiunas: ML searches for topology
- Deyan Mihaylov: circle searches for topology
- Benjamin Muntz: Is this the End of the World?
- Mikel Martin: topology and CMB polarization

A new and very odd foreground?

A&A, 696, A184 (2025) https://doi.org/10.1051/0004-6361/202453117 © The Authors 2025

A *p* < 0.0001 detection of cosmic microwave background cooling in galactic halos and its possible relation to dark matter

Frode K. Hansen^{1,*}, Diego Garcia Lambas^{2,3,4}, Heliana E. Luparello², Facundo Toscano², and Luis A. Pereyra²

arXiv > astro-ph > arXiv:2506.08832

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 10 Jun 2025]

Evidence for a sign change of the ISW effect in the very recent universe: hot voids and cold overdensities at z < 0.03

Frode K. Hansen, Diego Garcia Lambas, Andrés N. Ruiz, Facundo Toscano, Luis A. Pereyra

No proven "model" so far:

Systematics

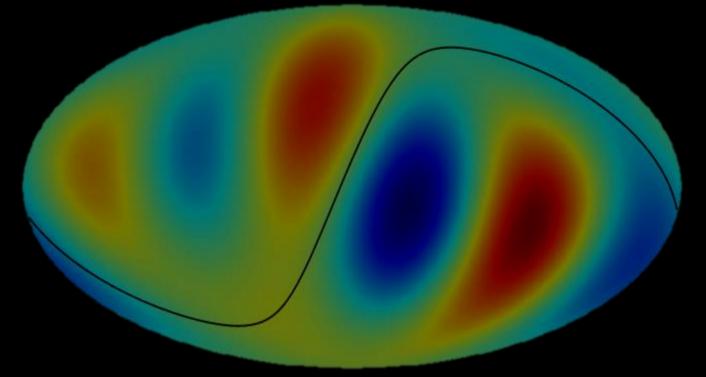
• Foreground? – weird & makes it worse

Cosmology – topology?

Would this explain anomalies?

Quadrupole-octopole alignment: if the local LSS has that alignment and intrinsic $C_2 \& C_3$ even lower!

Low N-variance more local LSS in S => low N+S variance!


Lack of large-angle correlations: makes worse?

Parity: not clear

SUMMARY

The CMB is NOT the realization of a Gaussian random statistically isotropic field.

The Universe is NOT Statistically Isotropic The cosmic orchestra may be playing a LCDM symphony, But somebody gave the bass and tuba the wrong score. They tried hard to keep it quiet. They failed.

We must find an explanation