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The goal today - have fun thinking about

the fascinating dynamics that can occur between the end of inflation and reheating 
including:


1. The formation of semi stable non-topological oscillons that emerge from the 
fragmentation of the inflaton field as inflation ends and can change the way the universe 

reheats.


2. The possibility within string cosmology of small string loops forming at the end of a period 
of inflation, evolving during Kination with tensions dependent on the underlying evolving 
volume moduli, which itself is evolving towards the asymptotic regimes of moduli space.


 3. The string loops can actually grow and percolate as their tensions decrease, and as they 
contribute to the energy density of the universe along with radiation and the moduli, we 

enter a new stable loop tracking solution where they contribute of order 75% of the energy 
density of the universe before moduli stabilisation and reheating. 


4. Such loops can have interesting cosmological consequences. 
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numerically compute the noise matrix elements for a slow-roll potential as well as a potential
with a slow-roll violating feature in Sec. 4.2.1 before proceeding to carry out a thorough
analytical treatment in Sec. 4.2.2 for instantaneous transitions between different phases during
inflation. We discuss the potential implications of our results for the computation of PBH
mass fraction and spell out a number of complexities associated with the computation in
Sec. 5 before concluding with a summary of our main results in Sec. 6. Appendix A provides a
derivation of the Mukhanov-Sasaki equation in spatially flat gauge. Appendix B deals with the
analytical solutions of the Mukhanov-Sasaki equation in the absence of any transition, while
Appendix C provides analytical expressions for the noise matrix elements in the super-Hubble
limit. Appendices D and E are dedicated to the dynamics during instantaneous transitions.

We work in natural units with c = ~ = 1 and define the reduced Planck mass to be
mp ⌘ 1/

p
8⇡G = 2.43 ⇥ 1018 GeV. We assume the background Universe to be described

by a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with signature
(�,+,+,+). An overdot (.) denotes derivative with respect to cosmic time t, while an overdash
(
0
) denotes derivative with respect to the conformal time ⌧ .

2 Inflationary dynamics beyond slow roll

We focus on the inflationary scenario of a single canonical scalar field � with a self-interaction
potential V (�) which is minimally coupled to gravity. The system is described by the action
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Although not the main theme of today let’s have a brief recap of Inflation 
What we know from Observations
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Einstein’s equations assuming scalar field dominates the energy 
densitySource of Inflation: A Scalar Field
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Inflation can occur when potential dominated 

When 
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with nearly flat potential dominating we obtain nearly exponential expansion at the background level 
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Inflation - allows us to predict the form of the fluctuations for a given model 

In particular during slow roll inflation, where the potential is flat enough and dominates the energy density


We have

We quantify the power spectrum and 
deviations from scale invariance in terms of 

slow roll parameters 


Inflationary Power-spectrum
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The Power Spectrum for scalar and tensor fluctuations on large scales 
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CMB observations:

Scalar Spectral index:

Red tilt

Tensor spectra index:

Prediction is nearly scale invariant and corrections are very small on large scales 

Slow roll predictions:

BICEP/Keck 2024:

nS-1
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nS = �4✏H + 2⌘H , n⌧ = �2✏H , r ⌘ A⌧

AS

= 16✏H⇤

1

nS-1

Implies 𝜖H<0.002 and ηH > 0.01 — we have a new hierarchy emerging - has implications for V(ɸ) ! 
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The cmb - main way we constrain models of inflation from observation 

Credit: Swagat Mishra
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Self-resonance and inflaton fragmentation

In the linear regime, Fourier mode functions satisfy
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**Lozanov, Amin(2017); **Shafi, Copeland, Mahbub, SSM, Basak (2024)

Swagat Saurav Mishra, CAPT, Nottingham Reheating and Oscillons

Alpha attractor E and T models of inflation (Kallosh and Linde 2013)

These fit more naturally with the recent Planck 
bounds on n and r. 
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The future — LiteBIRD will further constrain inflation models 

The “characteristic scale of the potential,” M is related to the integration constant Neq

according to M =
p

NeqMP. This allows us to express the tensor-to-scalar ratio in this class

of models in terms of the characteristic scale as
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✓
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◆2✓ M
MP

◆2

. (18)

Instantaneous reheating corresponds to N⇤ ' 57. Any delay in reheating will decrease N⇤,

and hence will increase the expected tensor-to-scalar ratio for a given characteristic scale.

As a consequence, for M & MP we expect r & 0.0025, so that an upper limit from LiteBIRD

with r < 0.002 at 95% C.L. (accounting for both statistical and systematic uncertainties)

would disfavor any of the simplest models of inflation with a characteristic scale of the

potential larger than the Planck scale.

In models such as the Starobinsky model, the Planck scale does not occur by accident, but

appears because the characteristic scale and the Planck scale are set by the same dimensionful

coe�cient in the action, the coe�cient of the Einstein-Hilbert term. This makes models with

M & MP a natural target for LiteBIRD. In Fig. 2 we take the Starobinsky model as our

fiducial model to showcase what a detection of primordial gravitational waves with LiteBIRD

would look like in the ns–r plane.
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Fig. 2: LiteBIRD constraints on the tensor-to-scalar ratio r and the scalar spectral index ns

assuming Starobinsky’s R
2 model for inflation [14] with N⇤ = 51 (specifically the analytic

prediction described in the text) as the fiducial model. The lighter and darker green regions

show 68% and 95% confidence level limits achievable with LiteBIRD and Planck. The

lighter and darker orange regions (partly hidden behind the green regions) show 68% and

95% confidence level limits achievable with LiteBIRD alone. The current limits are shown

in light blue. The dotted blue lines show representative cases of the first class of models

described in the text, monomial models. The red line and the dark purple dot show the

predictions of the Starobinsky model [14] (labeled as R2) and models that invoke the Higgs

field as the inflaton [112, 113], respectively. The light purple lines shows the prediction for

Poincaré disk models [116, 117].

18/156

From: arXiv:2202.02773 
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Modern/Extended Standard Model of Cosmology

The hot Big Bang phase:

Beginning of the Universe (⇥)

End of an earlier epoch of accelerated expansion (X)
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REHEATING: Origin of all primordial matter!
Swagat Saurav Mishra, CAPT, Nottingham Reheating and Oscillons

Reheating the Universe after inflation has finished
Inflation is the ultimate vacuum cleaner, it clears out pretty much everything, particles get diluted, radiation gets red shifted, we end inflation 

with a cold, empty large universe, not quite what we experience today. 


We need to reheat the universe - we convert the remaining energy stored in the inflaton field into primordial particles through their interactions. 
We could consider this the beginning of the Hot Big Bang


Credit: Swagat Mishra



New possible feature not included so far arises from asymptotically flat potentials - motivated from CMB observations 

However, we have ignored two important e↵ects:

! Gravitational clustering: (Very late times)

Metric fluctuations are important on time scales
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Credit: Swagat Mishra

They have attractive self interactions allowing for 
the formation of long lived non-topological 

solitons like oscillons — provide a new route to 
reheating 

[Amin et al 2010]



Oscillons : a type of soliton, self supported localised long lived due to non-linear interactions 

[Bogolyubsky & Makhankov 1978, Gleiser 1993, EJC et al 1995] 

Can obtain semi-analytic solutions from small amplitude oscillations:

Existence of quasi-Solitons: Oscillons

! Self-supported, localised, long-lived non-linear ‘solitary’
configurations.

! Solitons are ubiquitous in nature: (J. S. Russell in Scotland; 1834)

(Appearing in fluids, smoke rings, condensed matter physics, optics,
HEP, topological defects and Cosmology.)

! Analytical results based on small-amplitude oscillations
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With core profile:

Existence of quasi-Solitons: Oscillons
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[Amin et al, Mahbub and Mishra]

Oscillon field �(t, r) = �0 sech

✓
r

r0

◆
cos (!0t)

**Amin, Shiroko↵(2010); **Shafi, Copeland, Mahbub, SSM, Basak (2024)
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Credit: Swagat Mishra

Can survive for of order 109 
oscillations depending on the 

interactions. [Zhang et al 2020]



Oscillons : full non -linear evolution using CosmoLattice [Shafi et al 2024] - no external coupling  

Figure 7: Evolution of the volume-averaged inflaton configurations are plotted for the case g
2 =

0 of the E-model (top panel) and T-model (bottom panel) with �E, �T = 50
p
2/3, with the

upper horizontal axis being the number of e-folds N elapsed since the end of inflation. Successful
self-resonance results in the amplification of � e', shown here as a solid red line. As a result, the
homogeneous inflaton condensate (shown in solid green) fragments within t . 100m�1, forming
lumps in the process, leading to the formation of oscillons. We note that most oscillons form at the
onset of the backreaction phase (the transition from resonance to backreaction phases) near the peak
of �'̃.

In this work, since we numerically deal with a population of oscillons, we determine the oscillon
lifetime using the time evolution of the gradient and the kinetic (as well as the potential) energy
densities of the inflaton field. More specifically, given that oscillons are non-relativistic objects, the
lifetime (⌧osc) of a population of oscillons can be estimated by comparing the duration for which
eG'̃ / eK'̃ (' eV'̃) / a

�3. The oscillon lifetime in this work can be categorized based on the type of
potential used – symmetric or asymmetric. Using results from the lattice simulations, in particular
observing how the gradient energies eG'̃ evolve compared to the energy densities of matter and
radiation test fields in an expanding universe, we find that lifetime of oscillons formed in the E-
model is relatively longer than their T-model counterparts in the absence of an external coupling.
This can be attributed to a stronger self-interaction due to the presence of the cubic term in the
Taylor expansion of the E-model potential in Eq. (3.12), which is absent in the T-model potential.
We intend to carry out a thorough analytical study of the di↵erence between the oscillon lifetimes
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with the Friedmann constraint
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The massless o↵spring field � is assumed to behave as a spectator/test field during inflation which
contributes negligibly to the total energy density and couples very weakly to the inflaton. Since the
accelerated expansion during inflation rapidly dilutes the quanta of the � field, we can assume � to
be in its vacuum state at the end of inflation.

As mentioned in Sec. 1, we will be focusing on the formation and lifetime of oscillons in both
the asymmetric E-model and the symmetric T-model ↵-attractor potentials, which are shown in
Fig. 1 [86, 87], using parameters of the models which are consistent with CMB observations [14, 15].
In particular we consider the E-model potential of the form

V (') = V0

h
1� e

��E
'

mp

i2
; (2.22)

or, the T-model potential of the form,

V (') = V0 tanh2
✓
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'
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◆
, (2.23)

with a quadratic-quadratic coupling to the o↵spring field � of the form

I(', �) =
1

2
g
2
'
2
�
2
. (2.24)

Given the forms of V (') and I(', �), it follows that the post-inflationary dynamics of the system is
primarily dictated by the strength of the parameters � and g

2. Taking the importance of non-linear
and non-thermal processes into account, the reheating dynamics can in general be divided into three
distinct phases [25, 26, 88] as described below.

2.2.1 Preheating

As inflation ends with the breakdown of slow-roll, the (almost) homogeneous inflaton condensate
� rolls down the potential V (�) and begins to oscillate about its minimum. In the presence of
couplings, both self and external, the fluctuations of ' and � are enhanced via parametric resonance.
In particular, using fk(t) to represent the Fourier modes of the fluctuations of either ' or �, it satisfies
the equation of a damped parametric oscillator of the form

f̈k(t) + 3H ḟk(t) + ⌦2
k
(t) fk(t) = 0 ; with ⌦k(t+ Tk) ' ⌦k(t) , (2.25)

where Tk is the periodicity of the parametric frequency ⌦k(t) [26, 27, 89, 90]. During the coherent
oscillations of the inflaton, it is possible for ⌦k(t) to change non-adiabatically for certain ranges of k
values, namely, ����

⌦̇k(t)

⌦2
k
(t)

���� � 1 , (2.26)

thereby enabling e�cient parametric resonance to occur during preheating which in turn results
in the explosive (non-thermal) particle production in discrete bands of the comoving wavenumber
k of the quanta of the field fluctuations [26]. As a result, the energy contained in the oscillating
condensate �(t) is rapidly transferred to the fluctuations of ' and �. The precise nature of the
periodicity relies on the functional form of the inflaton self-interaction potential, V ('), and that of
the external coupling, I(', �). In Sec. 3, we use the approach of Floquet theory to analyse the
nature of the growth of these fluctuations at the linear level for the potentials and interaction terms
given by Eqs. (2.22)-(2.24).

– 7 –

Strong self-resonance —> Inflaton fragmentation 

Lattice details: N=1283 (also 2563 ), 0.05 m-1 ≤ 5 m-1  Swagat Mishra



Oscillons formation - Asymmetric potential [Shafi et al 2024]  Oscillon formation in real time (Asymmetric)

Swagat Saurav Mishra, CAPT, Nottingham Reheating and Oscillons

Mohammed Shafi



Oscillon fractional abundance [Shafi et al 2024]  

We find in the absence of external couplings oscillons form for both types of potentials and for generic initial conditions at the end of inflation. 
Remains to be seen how significant they can be and whether they can leave any hints of being present in say the GWs produced.  

Figure 16: The fractional energy contained in oscillons fosc for di↵erent external couplings associ-
ated with the E-model (left) and T-model (right) is shown for � = 50

p
2/3 (top) and � = 100

p
2/3

(bottom). For g2 = 0 (purple curves), after reaching its peak value following the onset of backreac-
tion, the fraction fosc for each plot then decreases to a near-constant value at late times. The presence
of the external coupling leads to a rapid decay where the late-time (near-constant) asymptote of fosc
tends to be much lower than that in the case of g2 = 0.

of g2 2 (10�6
, 10�4), even though fosc initially reaches peak values similar to that of g2 = 0, the

presence of the additional decay channel results in reduced asymptotic values of the oscillon fraction,
i.e. fosc . 0.3 at late times. In particular, for g2 & O(10�5), the final fraction fosc can be less than
10% of the total energy budget. The reduction in the value of fosc in between t ⇠ (few) 100m�1 and
t ⇠ (few) 1000m�1 corresponds to the rapid decay of oscillons into �-particles, which is consistent
with (the grey shaded region) in Fig. 15. The remaining oscillons (inflaton lumps) then continue to
decay into both �-particles and scalar radiation at a much slower rate, hence the asymptotic values
of fosc exhibit a slow-decay trend towards t ⇠ 104m�1, as can be seen in Fig. 16.

Note that for large enough external coupling, corresponding to g2 & 4⇥10�5, the red curves show
that fosc exhibits a slowly increasing (instead of decreasing) trend. This is due to the contribution
from the interaction term eI('̃, �̃) in Eq. (4.11), which is usually negligible as compared to that of
the gradient term eG'̃ for g

2
< O

�
10�5

�
. However, the interaction term becomes significant (if not

dominant) for g
2
> O

�
10�5

�
, as can be seen from the brown curves in the bottom panel of Fig. 6.

Hence, for large values of g2, the late time asymptote of fosc is not completely dictated by oscillons.
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Fractional Energy Density of Oscillons

Energy/Mass fraction fosc ⌘
Eosc

Etot
=

R
�⇢'&4⇢̄'

d3x⇢'(x, t)R
d3x⇢'(x, t)

(Fractional energy density of oscillons)

& 40% of the total density ) Significant!

**Mahbub, SSM (2023)
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Equations of Reheating Dynamics

System : Inflaton ' �! massless o↵spring � ; m � m0�

Described by the action
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External coupling 
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String Cosmology in Large Volume Scenarios - After inflation - evolving moduli fields ! 
The bit between the end of inflation and the thermal HBB - some 30 orders of magnitude in time. 

Potentially new stringy features could emerge which would modify the standard picture. 
For example, large field displacements between end of inflation and final vacuum - under control !  

No necessary relationship between inflaton field and field responsible for reheating. In fact in D3-anti D3 brane case, inflaton disappears. 
Long Kination and moduli dominated epoch leading to moduli driven reheating 

5. Post-Inflation

This section refers to physics that originates between the end of inflation and the start of the thermal Hot Big Bang.
It begins with the universe still dominated by the vacuum energy of inflation, but now moving away from slow-roll as
the inflationary epoch terminates. It ends as the universe settles into the Hot Big Bang: a radiation-dominated epoch
with the energy density predominantly in relativistic thermalised Standard Model degrees of freedom. In this section,
we focus on what happened between these two eras. This is not a comprehensive review of all aspects of cosmology
in this epoch. Instead, we focus on those aspects where stringy physics is especially relevant. Readers interested in a
more general treatment of the standard cosmology can consult e.g. [671, 4], while an earlier discussion of aspects of
moduli physics in this epoch is [672] and a review of non-standard expansion histories is [673].

While it is true that there exists a ‘standard’ cosmological account of reheating, involving a rapid transfer of energy
from inflationary degrees of freedom to relativistic Standard Model degrees of freedom, in string theory cosmologies
there are no strong reasons to expect this standard account to hold. Although some aspects of the standard cosmology
may be preserved in some string theory models, the standard cosmology may be modified in (at least) three ways.
First, through the existence of large field displacements between the end of inflation and the final vacuum. Second, in
there being no necessary relationship between the inflaton field and the field responsible for reheating. Third, through
the expectation of a long moduli-dominated epoch in the universe culminating in moduli-driven reheating. These
possibilities are illustrated in Fig. 21. In addition, UV complete string models may connect aspects of early universe
and particle physics that otherwise appear uncorrelated.

V(!)

!!min

"! ≤ $!

"! ≈ &'$!

(1016 GeV)4

inflation

kination

Moduli 
domination
and reheating

V ≈ e-!"

Scaled by  
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Figure 21: A cartoon of one way moduli and stringy physics can substantially modify the post-inflationary history of the universe. Following a
period of inflation at relatively high energies, several epochs may occur prior to the start of the Hot Big Bang. We show here the case of a kination
epoch followed by moduli domination leading to late reheating. Note the large range of scales that may arise in the scalar potential and the scalar
field displacement. In particular, the barrier after the minimum may be 20 (or more) orders of magnitude smaller than the energy scale during
inflation (Vbarrier ' 10�20Vinf ).

5.1. The Standard Cosmology
We start with a brief review of the ‘standard’ account of post-inflationary cosmology. During the inflationary

epoch, the universe was dominated by the vacuum energy density of a scalar field and the evolution of the universe

81

 [Cicoli et al 2023]

NOVEL COSMOLOGICAL HISTORY

This motivates a 
distinctive ‘stringy’ 
cosmological history
quite distinct from the 
normal assumption of 
radiation domination 
after inflation

See yesterday talks by 
Mosny,  Revello, 
Chandrashekar



During Kination - potential 
term subdominant: 

problem, which only requires control over the quadratic term in the above expansion). Any such
control can only be achieved through the ultraviolet theory, namely string theory. Inflationary
models leading to large tensors, if they exist, can therefore only be understood in a quantum
gravity context: the low-energy theory lacks the tools to control such operators.

The other, more contested, area is whether it is ever possible in string theory to have poten-
tials that are flat over trans-Planckian distances. The term ‘trans-Planckian’ is unfortunately a
bit loose here: in e↵ective field theory arguments, it is hard to argue over the privileged status
of MP compared to MP

⇡ , MP
2 or 2⇡MP . The sharpest statements apply for �� � MP where

such O(1) factors do not matter.
In such a parametric limit, it appears impossible for string theory potentials to remain flat

over such distances. Despite a lot of e↵ort, no examples are known. Furthermore, in explicit
studies of field ranges, symmetries that can protect potentials (for example, the axion shift
symmetry) are only good for sub-Planckian (or, at best, O(1) Planckian) distances. Field ranges
which can easily be trans-Planckian involve fields such as the volume modulus or dilaton that
are directly involved in the string scaled and so cannot have flat potentials over long distances.
This lack-of-flatness relates to the ideas of the swampland distance conjecture2, the statement
that towers of states become exponentially light over transPlanckian field displacements, mi ⇠

M0 exp (����/MP ): the light tower of states reaches scales comparable to Hubble and then
back-react on the e↵ective field theory, violating flatness.

Indeed, it is perhaps the case that the current failure to observe tensor modes in the CMB
is a necessary feature of quantum gravity and that large-field inflation models of the sort that
would have produced observable tensor modes are incompatible with quantum gravity.

Turning things around, the above two arguments can be viewed as a clue to why inflation-
ary model-building (as opposed to the inflationary paradigm) has been frustrating: successful
inflation models require control over Planck scale physics.

3 Kination and Tracker Epochs

What happens after inflation ends is largely unknown. In the standard picture of cosmologi-
cal evolution, the period of inflation is followed by rapid reheating and a conversion of energy
into relativistic degrees of freedom which redshift as radiation and generate the Hot Big Bang.
However, there are currently minimal observational constraints on the era between inflation
and nucleosynthesis3, leaving plenty of opportunity for qualitatively di↵erent cosmological be-
haviours. Examples are kination or tracker epochs. In the former, the universe is dominated by
the kinetic energy density of a rolling scalar field whereas in the latter there are fixed proportions
of kinetic energy, potential energy and a background fluid (e.g. radiation) as a field rolls down
an exponential potential. Such epochs are also well motivated in string constructions where the
final vacuum may be at a large distance in field space from the inflationary locus and have been
the focus of much recent work in string compactifications4 5 6 7 8.

Such epochs are also considered in the regular cosmology literature. Why is string theory
(or some theory of the Planck scale) necessary to understand and justify them?

During a kination epoch, in which the potential can be neglected, it follows from the evolution
equations

�̈+ 3H�̇ = 0, (9)

3H2
M

2
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�̇2

2
, (10)

that the kinating scalar � evolves as
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dwhen formulating the physics in 4d Einstein frame with a fixed value of MP (for example, Ms = MP /
p
V).
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Kinating field satisfies : with a(t) ⇠ t
1/3. This evolution implies that the scalar traverses approximately one Planckian

distance in field space every Hubble time. In any extended kination epoch lasting multiple
Hubble times, whether in the early or late universe, the kinating field traverses mutiple Planckian
distances in field space.

One of the easiest ways to realise a kination epoch is through a scalar field rolling down
a steep exponential potential V (�) = V0e

���/MP . If the potential is steep enough (� >
p
6)

then the field enters a kination epoch as the potential energy grows ever more sub-dominant.
However, as energy densities redshift during a kination epoch as

⇢kin ⇠
1

a(t)6
, (12)

any other fluid (in particular, radiation or matter) will grow in importance relative to the kinat-
ing scalar and eventually catch up. For exponential potentials, the endpoint of this evolution
is a tracker solution with fixed proportions of the energy density in potential, kinetic and fluid
energy.

During a tracker solution along an exponential potential V (�) = V0e
���/MP , the evolution

of the scalar field is

�(t) = �(t0) +
2MP

�
ln

✓
t

t0

◆
. (13)

As the tracker solution only exists for � �
p
6, we see that the scalar field evolution is always

slower than in kination epochs; nonetheless, for reasonable values of � it remains true that the
field � traverses approximately one Planckian distance in field space every Hubble time while
traversing a significantly transPlanckian distance in field space during any extended tracker
epoch lasting multiple Hubble times.

The relevance of string theory is now clear: the consequence of the above is that it is not
possible to incorporate either extended kination or extended tracker epochs into a cosmological
history without reckoning with Planck scale physics in the form of Planck-suppressed operators.
When a field traverses a transPlanckian distance �� � MP in field space, any Lagrangian

becomes vulnerable to corrections of the form f

⇣
��
MP

⌘
which could disrupt this evolution: and

so neither kination nor tracker epochs can be justified and understood by themselves without
control over such Planck scale physics.

In the context of string theory, there exist more precise statements about field behaviour
over such trans-Planckian distances in field space, in particular through the Swampland Distance

Conjecture
2 (which by now has a large amount of support from many explicit examples). This

states that such field excursions are accompanied by a tower of states becoming exponentially
light, so that the masses of this tower of states behaves as

mi ⇠ M0e
��(��)/MP , (14)

where � is an O(1) constant. As such states become exponentially light, the e↵ective UV cuto↵ of
the original e↵ective field theory becomes correspondingly lower. One well-understood example
of such a tower of states is the Kaluza-Klein tower present in string compactifications as fields
evolve towards the large volume decompactification limit. Any theory operating with a fixed
UV cuto↵ then becomes invalid as this tower of states descends and goes below the cuto↵.

Here it is useful to clarify one misconception that sometimes appears. The Swampland
Distance Conjecture is not a statement that e↵ective field theories break down or cannot be
used as fields evolve through trans-Planckian field displacements (such a statement would be
incorrect). Rather, it is a statement about towers of states becoming light; a statement about
the behaviour of the UV theory in this limit. There are well-established cases where the UV
theory is known and e↵ective field theories continue to be valid for arbitrarily transPlanckian
field displacements. The clearest example of this is the decompactification limit: in the large
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UV cuto↵ then becomes invalid as this tower of states descends and goes below the cuto↵.

Here it is useful to clarify one misconception that sometimes appears. The Swampland
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Denoting derivatives with respect to ⌘ by a prime, the conformal Hubble scale becomes
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In our context of IIB string compactification with the volume modulus as the kinating field,
the extra-dimensional volume grows during kination as [42]
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kination the modulus mass behaves as m� ⇠ MP
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and so m� ⌧ H: the field is

e↵ectively massless.
Going back in time, one arrives at a point where the kination approximation is no longer

justified as the potential energy is comparable to the kinetic one (the end of inflation). In
particular, equating the two, one can approximate the beginning of kination to occur at a
time t0 such that
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As mentioned above, during the kination epoch, the modulus field is (e↵ectively) massless,
and from Eq. (2.4), we see that the comoving Hubble scale is increasing, (aH)�1 ⇠ t

2/3 and
modes of the � field re-enter the horizon.

Note that, provided there is an initial source of radiation or matter present, the kination
epoch is time-limited; as ⇢kin ⇠ a

�6 and ⇢� ⇠ a
�4, radiation will ultimately catch up with

and overtake the kinetic energy.
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Volume modulus 𝒱  

[EJC, Liddle & Wands 1998]

As inflation ends we enter a Kination dominated period [Apers, Conlon, EJC, Mosny and Revello - 2401.04064; 
Gouttenoire, Servant and Simakachorn - 2111.01150]:
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Nice feature we recently realised  [Mosney, Conlan and EJC - 2507.04161]
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Sub horizon perturbations of the scalar field can act as massless radiation, effectively decouple from the background scalar 
field and source the tracking solution without the need for background radiation

Radiation tracker

This is nothing but a (ω̄(t), εωε) system.

For ϑ > 2 we know that this has a radiation tracker!
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Cosmological Self-Trackers

Kination-radiation domination-tracker (for a single Fourier mode)

0 1 2 3 4 5 6 7 8

E-folds

-13

-11

-9

-7

-5

lo
g 1

0
(r

E
)

0.3

0.4

0.5

0.6

c(
N

)

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

ra
ti

o

x2

y2

z2

Martin Mosny Northeastern University String Phenomenology 2025

Cosmological Self-Trackers

Cosmological tracker
1

What is it?
A scalar field solution which asymptotically approaches a
trajectory that mimics the dominant background energy
density.

Ingredients:

1 Spatially flat FLRW universe with H(t).

2 Scalar field ω(t).

3 Exponential potential V = V0e
→ωε/MP .

4 Fluid with pϑ = (ε → 1)ϑϑ .
1
Wetterich (1988); Ferreira, Joyce (1997); Copeland, Liddle, Wands (1998); ...

Martin Mosny Northeastern University String Phenomenology 2025

Cosmological Self-Trackers

Radiation tracker (for a single Fourier mode)

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y

ra
ti

o

x2

y2

z2

0 1 2 3 4 5 6 7 8

E-folds

-6

-5

-4

lo
g 1

0
(r

E
)

Martin Mosny Northeastern University String Phenomenology 2025

Cosmological Self-Trackers

Kination followed by radiation tracker
Details of radiation tracker
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5. Post-Inflation

This section refers to physics that originates between the end of inflation and the start of the thermal Hot Big Bang.
It begins with the universe still dominated by the vacuum energy of inflation, but now moving away from slow-roll as
the inflationary epoch terminates. It ends as the universe settles into the Hot Big Bang: a radiation-dominated epoch
with the energy density predominantly in relativistic thermalised Standard Model degrees of freedom. In this section,
we focus on what happened between these two eras. This is not a comprehensive review of all aspects of cosmology
in this epoch. Instead, we focus on those aspects where stringy physics is especially relevant. Readers interested in a
more general treatment of the standard cosmology can consult e.g. [671, 4], while an earlier discussion of aspects of
moduli physics in this epoch is [672] and a review of non-standard expansion histories is [673].

While it is true that there exists a ‘standard’ cosmological account of reheating, involving a rapid transfer of energy
from inflationary degrees of freedom to relativistic Standard Model degrees of freedom, in string theory cosmologies
there are no strong reasons to expect this standard account to hold. Although some aspects of the standard cosmology
may be preserved in some string theory models, the standard cosmology may be modified in (at least) three ways.
First, through the existence of large field displacements between the end of inflation and the final vacuum. Second, in
there being no necessary relationship between the inflaton field and the field responsible for reheating. Third, through
the expectation of a long moduli-dominated epoch in the universe culminating in moduli-driven reheating. These
possibilities are illustrated in Fig. 21. In addition, UV complete string models may connect aspects of early universe
and particle physics that otherwise appear uncorrelated.

V(!)

!!min

"! ≤ $!

"! ≈ &'$!

(1016 GeV)4

inflation

kination

Moduli 
domination
and reheating

V ≈ e-!"

Scaled by  
≈ 1030

Figure 21: A cartoon of one way moduli and stringy physics can substantially modify the post-inflationary history of the universe. Following a
period of inflation at relatively high energies, several epochs may occur prior to the start of the Hot Big Bang. We show here the case of a kination
epoch followed by moduli domination leading to late reheating. Note the large range of scales that may arise in the scalar potential and the scalar
field displacement. In particular, the barrier after the minimum may be 20 (or more) orders of magnitude smaller than the energy scale during
inflation (Vbarrier ' 10�20Vinf ).

5.1. The Standard Cosmology
We start with a brief review of the ‘standard’ account of post-inflationary cosmology. During the inflationary

epoch, the universe was dominated by the vacuum energy density of a scalar field and the evolution of the universe

81

Time varying standard model parameters because determined by evolving moduli fields !
Gauge couplings, Yukawa couplings and axion decay constants - could be different from today.

Perturbations in the field grow during Kination and into the tracker regime before the moduli are stabilised and reheating occurs - potential for 
new exciting pre BBN physics ! [Apers et al 2024]

Cosmic superstring tensions will evolve in time, and a new network formation process could emerge from the formation of loops 

3

possible; the limiting case is that of kination, when the
entire energy density of the universe lies in a rolling scalar
field.

This suggests that a kination environment (see [12]
for a recent general review of kination) gives the best
opportunity to satisfy Eq. (17). In 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
the asymptotic boundaries of moduli space: in the strict
asymptotic limit, all scales vanish compared to MP .

During a kination epoch, the universe is dominated by
the kinetic energy of the rolling modulus,
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We focus on the case where � is the volume modulus of
the compactification evolving towards large compactific-
tion radii. This direction is well motivated: the e↵ective
field theory becomes better controlled at large radii. Such
cosmologies are also appealing from both phenomenolog-
ical and formal perspectives [13].

Specialising to IIB models where moduli stabilisation
is best understood, the canonical modulus � relates to

the compactification volume as � ⇠
q

2
3 lnV and so the

volume evolves as V / t during this epoch (see [14] and
[15] for more detailed discussion).

The fundamental string scale relates to the 4d Planck
scale as

ms ⇠
MPp
V
. (19)

In string compactifications, all scales are tied to the fun-
damental scale ms. As the volume increases, the string
scale (in 4d Einstein frame) decreases. In particular, the
tension of all string-like objects in the 4d theory will also
decrease.

The most obvious string-like object in string theory are
fundamental strings, with a tension

Gµ ⇠ m
2
s. (20)

During a kination epoch this tension behaves as

Gµ ⇠ t
�1 (21)

and so

2H +
µ̇

µ
= �H, (22)

satisfying the percolation condition Eq. 17.
Note there is one further type of string automatically

present in IIB compactifications. This is the axionic
string associated to the volume modulus. The Kähler
potential K = �3 ln(T + T̄ ), with T = ⌧b + iab, gives the
Lagrangian
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from which it follows that the volume axion ab has decay
constant fa ⇠ ⌧
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b ⇠ V�2/3. The presence of this axion

implies the existence of associated axionic strings.
If the tension were given by Gµ ⇠ f
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�4/3, falling o↵ more rapidly than for fundamental
strings. However, the cores of such stringy axionic strings
tend to involve wrapped branes (e.g. see [16]) such as
a D3 brane wrapped on an internal 2-cycle to create a
string in the non-compact dimensions. A string created
from a D3 brane wrapped on a large 2-cycle has a tension
Gµ ⇠ R

2
m

2
s and so evolves as Gµ ⇠ t

�2/3 during a
kination epoch. While the tension does decrease, such
strings are not in the percolation regime as 2H + µ̇

µ = 0.
We therefore focus on fundamental strings, where the

physical length of the loop grows as
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while the scale factor grows as a(t) ⇠ t
1/3 and so, in

comoving coordinates, the radius grows as
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IV. GRAVITATIONAL WAVE EMISSION

Oscillating loops radiate energy and so shrink due to
gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written

PGW = �Gµ
2
, (26)

where � is a numerical factor that depends on the precise
loop configuration. Simulations suggest � ⇠ 50 � 75[1].
It follows that the lifetime of a loop of length �ls and
mass �lsµ is (using µ = m
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If ⌧GW ⌧ H
�1, GW emission dominates the string dy-

namics over the e↵ects of decreasing tension. Conversely,
if ⌧GW � H

�1 then the GW emission is negligible com-
pared to the e↵ects of the decreasing tension.
During the volume kination epoch,
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As V / t during volume modulus kination and M
2
s ⇠

M2
P

V , it follows that the universe energy density during
volume kination satisfies

⇢kin = A⇥m
4
s, (29)

with

3

possible; the limiting case is that of kination, when the
entire energy density of the universe lies in a rolling scalar
field.

This suggests that a kination environment (see [12]
for a recent general review of kination) gives the best
opportunity to satisfy Eq. (17). In 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
the asymptotic boundaries of moduli space: in the strict
asymptotic limit, all scales vanish compared to MP .

During a kination epoch, the universe is dominated by
the kinetic energy of the rolling modulus,
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We focus on the case where � is the volume modulus of
the compactification evolving towards large compactific-
tion radii. This direction is well motivated: the e↵ective
field theory becomes better controlled at large radii. Such
cosmologies are also appealing from both phenomenolog-
ical and formal perspectives [13].

Specialising to IIB models where moduli stabilisation
is best understood, the canonical modulus � relates to

the compactification volume as � ⇠
q

2
3 lnV and so the

volume evolves as V / t during this epoch (see [14] and
[15] for more detailed discussion).
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scale as
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gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written
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where � is a numerical factor that depends on the precise
loop configuration. Simulations suggest � ⇠ 50 � 75[1].
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�1 then the GW emission is negligible com-
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Oscillating loops radiate energy and so shrink due to
gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written
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where � is a numerical factor that depends on the precise
loop configuration. Simulations suggest � ⇠ 50 � 75[1].
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V , it follows that the universe energy density during
volume kination satisfies

⇢kin = A⇥m
4
s, (29)



Percolating cosmic string networks from kination  [Conlon, EJC, Hardy and Sanchez Gonzalez - 2406.12637]

Oscillating string loops grow when their tension decreases with time. 
If 2H + d/dt (ln(µ)) < 0 —> loops grow faster than the scale factor, hence an initial population of isolated small loops can grow, percolate and 

form a network. 

This condition is the case for fundamental strings in the bgd of a kinating volume modulus rolling towards the asymptotic large volume region of 
moduli space. 

The tension of the string network is eventually set by the final vacua of the kinating moduli. 

Kinating field satisfies :

problem, which only requires control over the quadratic term in the above expansion). Any such
control can only be achieved through the ultraviolet theory, namely string theory. Inflationary
models leading to large tensors, if they exist, can therefore only be understood in a quantum
gravity context: the low-energy theory lacks the tools to control such operators.

The other, more contested, area is whether it is ever possible in string theory to have poten-
tials that are flat over trans-Planckian distances. The term ‘trans-Planckian’ is unfortunately a
bit loose here: in e↵ective field theory arguments, it is hard to argue over the privileged status
of MP compared to MP

⇡ , MP
2 or 2⇡MP . The sharpest statements apply for �� � MP where

such O(1) factors do not matter.
In such a parametric limit, it appears impossible for string theory potentials to remain flat

over such distances. Despite a lot of e↵ort, no examples are known. Furthermore, in explicit
studies of field ranges, symmetries that can protect potentials (for example, the axion shift
symmetry) are only good for sub-Planckian (or, at best, O(1) Planckian) distances. Field ranges
which can easily be trans-Planckian involve fields such as the volume modulus or dilaton that
are directly involved in the string scaled and so cannot have flat potentials over long distances.
This lack-of-flatness relates to the ideas of the swampland distance conjecture2, the statement
that towers of states become exponentially light over transPlanckian field displacements, mi ⇠

M0 exp (����/MP ): the light tower of states reaches scales comparable to Hubble and then
back-react on the e↵ective field theory, violating flatness.

Indeed, it is perhaps the case that the current failure to observe tensor modes in the CMB
is a necessary feature of quantum gravity and that large-field inflation models of the sort that
would have produced observable tensor modes are incompatible with quantum gravity.

Turning things around, the above two arguments can be viewed as a clue to why inflation-
ary model-building (as opposed to the inflationary paradigm) has been frustrating: successful
inflation models require control over Planck scale physics.

3 Kination and Tracker Epochs

What happens after inflation ends is largely unknown. In the standard picture of cosmologi-
cal evolution, the period of inflation is followed by rapid reheating and a conversion of energy
into relativistic degrees of freedom which redshift as radiation and generate the Hot Big Bang.
However, there are currently minimal observational constraints on the era between inflation
and nucleosynthesis3, leaving plenty of opportunity for qualitatively di↵erent cosmological be-
haviours. Examples are kination or tracker epochs. In the former, the universe is dominated by
the kinetic energy density of a rolling scalar field whereas in the latter there are fixed proportions
of kinetic energy, potential energy and a background fluid (e.g. radiation) as a field rolls down
an exponential potential. Such epochs are also well motivated in string constructions where the
final vacuum may be at a large distance in field space from the inflationary locus and have been
the focus of much recent work in string compactifications4 5 6 7 8.

Such epochs are also considered in the regular cosmology literature. Why is string theory
(or some theory of the Planck scale) necessary to understand and justify them?

During a kination epoch, in which the potential can be neglected, it follows from the evolution
equations

�̈+ 3H�̇ = 0, (9)

3H2
M

2
P =

�̇2

2
, (10)

that the kinating scalar � evolves as
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dwhen formulating the physics in 4d Einstein frame with a fixed value of MP (for example, Ms = MP /
p
V).

with :with a(t) ⇠ t
1/3. This evolution implies that the scalar traverses approximately one Planckian

distance in field space every Hubble time. In any extended kination epoch lasting multiple
Hubble times, whether in the early or late universe, the kinating field traverses mutiple Planckian
distances in field space.

One of the easiest ways to realise a kination epoch is through a scalar field rolling down
a steep exponential potential V (�) = V0e

���/MP . If the potential is steep enough (� >
p
6)

then the field enters a kination epoch as the potential energy grows ever more sub-dominant.
However, as energy densities redshift during a kination epoch as

⇢kin ⇠
1

a(t)6
, (12)

any other fluid (in particular, radiation or matter) will grow in importance relative to the kinat-
ing scalar and eventually catch up. For exponential potentials, the endpoint of this evolution
is a tracker solution with fixed proportions of the energy density in potential, kinetic and fluid
energy.

During a tracker solution along an exponential potential V (�) = V0e
���/MP , the evolution

of the scalar field is
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As the tracker solution only exists for � �
p
6, we see that the scalar field evolution is always

slower than in kination epochs; nonetheless, for reasonable values of � it remains true that the
field � traverses approximately one Planckian distance in field space every Hubble time while
traversing a significantly transPlanckian distance in field space during any extended tracker
epoch lasting multiple Hubble times.

The relevance of string theory is now clear: the consequence of the above is that it is not
possible to incorporate either extended kination or extended tracker epochs into a cosmological
history without reckoning with Planck scale physics in the form of Planck-suppressed operators.
When a field traverses a transPlanckian distance �� � MP in field space, any Lagrangian

becomes vulnerable to corrections of the form f

⇣
��
MP

⌘
which could disrupt this evolution: and

so neither kination nor tracker epochs can be justified and understood by themselves without
control over such Planck scale physics.

In the context of string theory, there exist more precise statements about field behaviour
over such trans-Planckian distances in field space, in particular through the Swampland Distance

Conjecture
2 (which by now has a large amount of support from many explicit examples). This

states that such field excursions are accompanied by a tower of states becoming exponentially
light, so that the masses of this tower of states behaves as

mi ⇠ M0e
��(��)/MP , (14)

where � is an O(1) constant. As such states become exponentially light, the e↵ective UV cuto↵ of
the original e↵ective field theory becomes correspondingly lower. One well-understood example
of such a tower of states is the Kaluza-Klein tower present in string compactifications as fields
evolve towards the large volume decompactification limit. Any theory operating with a fixed
UV cuto↵ then becomes invalid as this tower of states descends and goes below the cuto↵.

Here it is useful to clarify one misconception that sometimes appears. The Swampland
Distance Conjecture is not a statement that e↵ective field theories break down or cannot be
used as fields evolve through trans-Planckian field displacements (such a statement would be
incorrect). Rather, it is a statement about towers of states becoming light; a statement about
the behaviour of the UV theory in this limit. There are well-established cases where the UV
theory is known and e↵ective field theories continue to be valid for arbitrarily transPlanckian
field displacements. The clearest example of this is the decompactification limit: in the large

where �0, t0 denote the value of � and the time when kination domination begins. During
this kination epoch, all energy is in the form of field kinetic energy, which evolves as
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. (2.3)

The logarithmic divergence in Eq. (2.2) at t = 0 reflects the formal divergence of the kinetic
energy at the point where a(t) = 0. During an epoch of pure kination, the scale factor and
Hubble rate behave as
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where a0 ⌘ a(t0). It is convenient to switch to conformal time ⌘, which is related to t by
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which implies that the field evolution of Eq. (2.2) becomes
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Denoting derivatives with respect to ⌘ by a prime, the conformal Hubble scale becomes

H ⌘ a
0

a
=

1

2⌘
. (2.7)

In our context of IIB string compactification with the volume modulus as the kinating field,
the extra-dimensional volume grows during kination as [42]

V
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t0
. (2.8)

Here V is the dimensionless Calabi-Yau volume, i.e. the physical volume measured in units
of l6s , where ls = 2⇡

p
↵0. This follows using the Kähler potential K = �3 ln
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T + T̄
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, where

the complexified Kähler modulus T = ⌧R + ia and the canonically normalised field is �
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3
2 ln ⌧R =

q
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3 lnV with ⌧R ⇠ V2/3 giving the relationship between 4-cycle volumes and the

overall volume. For the LVS potential, the modulus mass (or, strictly, the second derivative
of the potential), scales with the volume as m� ⇠ MPV�3/2; it therefore follows that during
kination the modulus mass behaves as m� ⇠ MP

1
(t/t0)3/2

and so m� ⌧ H: the field is

e↵ectively massless.
Going back in time, one arrives at a point where the kination approximation is no longer

justified as the potential energy is comparable to the kinetic one (the end of inflation). In
particular, equating the two, one can approximate the beginning of kination to occur at a
time t0 such that

M
2
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3t20
⇠ V (�0) ⇠ ⇤4

inf . (2.9)

As mentioned above, during the kination epoch, the modulus field is (e↵ectively) massless,
and from Eq. (2.4), we see that the comoving Hubble scale is increasing, (aH)�1 ⇠ t

2/3 and
modes of the � field re-enter the horizon.

Note that, provided there is an initial source of radiation or matter present, the kination
epoch is time-limited; as ⇢kin ⇠ a

�6 and ⇢� ⇠ a
�4, radiation will ultimately catch up with

and overtake the kinetic energy.
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possible; the limiting case is that of kination, when the
entire energy density of the universe lies in a rolling scalar
field.

This suggests that a kination environment (see [12]
for a recent general review of kination) gives the best
opportunity to satisfy Eq. (17). In 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
the asymptotic boundaries of moduli space: in the strict
asymptotic limit, all scales vanish compared to MP .

During a kination epoch, the universe is dominated by
the kinetic energy of the rolling modulus,
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We focus on the case where � is the volume modulus of
the compactification evolving towards large compactific-
tion radii. This direction is well motivated: the e↵ective
field theory becomes better controlled at large radii. Such
cosmologies are also appealing from both phenomenolog-
ical and formal perspectives [13].

Specialising to IIB models where moduli stabilisation
is best understood, the canonical modulus � relates to

the compactification volume as � ⇠
q

2
3 lnV and so the

volume evolves as V / t during this epoch (see [14] and
[15] for more detailed discussion).

The fundamental string scale relates to the 4d Planck
scale as

ms ⇠
MPp
V
. (19)

In string compactifications, all scales are tied to the fun-
damental scale ms. As the volume increases, the string
scale (in 4d Einstein frame) decreases. In particular, the
tension of all string-like objects in the 4d theory will also
decrease.

The most obvious string-like object in string theory are
fundamental strings, with a tension

Gµ ⇠ m
2
s. (20)

During a kination epoch this tension behaves as

Gµ ⇠ t
�1 (21)

and so

2H +
µ̇

µ
= �H, (22)

satisfying the percolation condition Eq. 17.
Note there is one further type of string automatically

present in IIB compactifications. This is the axionic
string associated to the volume modulus. The Kähler
potential K = �3 ln(T + T̄ ), with T = ⌧b + iab, gives the
Lagrangian

L =
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from which it follows that the volume axion ab has decay
constant fa ⇠ ⌧
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b ⇠ V�2/3. The presence of this axion

implies the existence of associated axionic strings.
If the tension were given by Gµ ⇠ f
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a , then during
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�4/3, falling o↵ more rapidly than for fundamental
strings. However, the cores of such stringy axionic strings
tend to involve wrapped branes (e.g. see [16]) such as
a D3 brane wrapped on an internal 2-cycle to create a
string in the non-compact dimensions. A string created
from a D3 brane wrapped on a large 2-cycle has a tension
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s and so evolves as Gµ ⇠ t

�2/3 during a
kination epoch. While the tension does decrease, such
strings are not in the percolation regime as 2H + µ̇

µ = 0.
We therefore focus on fundamental strings, where the
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IV. GRAVITATIONAL WAVE EMISSION

Oscillating loops radiate energy and so shrink due to
gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written

PGW = �Gµ
2
, (26)

where � is a numerical factor that depends on the precise
loop configuration. Simulations suggest � ⇠ 50 � 75[1].
It follows that the lifetime of a loop of length �ls and
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If ⌧GW ⌧ H
�1, GW emission dominates the string dy-

namics over the e↵ects of decreasing tension. Conversely,
if ⌧GW � H

�1 then the GW emission is negligible com-
pared to the e↵ects of the decreasing tension.
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possible; the limiting case is that of kination, when the
entire energy density of the universe lies in a rolling scalar
field.

This suggests that a kination environment (see [12]
for a recent general review of kination) gives the best
opportunity to satisfy Eq. (17). In 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
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from a D3 brane wrapped on a large 2-cycle has a tension
Gµ ⇠ R

2
m

2
s and so evolves as Gµ ⇠ t

�2/3 during a
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gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written
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where � is a numerical factor that depends on the precise
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possible; the limiting case is that of kination, when the
entire energy density of the universe lies in a rolling scalar
field.

This suggests that a kination environment (see [12]
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opportunity to satisfy Eq. (17). In 4d Einstein frame
with constant MP , the requirement that µ̇
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implies that the fields roll in the direction of decreas-
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�4/3, falling o↵ more rapidly than for fundamental
strings. However, the cores of such stringy axionic strings
tend to involve wrapped branes (e.g. see [16]) such as
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string in the non-compact dimensions. A string created
from a D3 brane wrapped on a large 2-cycle has a tension
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�2/3 during a
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Oscillating loops radiate energy and so shrink due to
gravitational wave emission. It is important to check
that this e↵ect does not dominate the growth from the
decreasing tension. The rate of power loss from a loop
from GW emission is written

PGW = �Gµ
2
, (26)

where � is a numerical factor that depends on the precise
loop configuration. Simulations suggest � ⇠ 50 � 75[1].
It follows that the lifetime of a loop of length �ls and
mass �lsµ is (using µ = m
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If ⌧GW ⌧ H
�1, GW emission dominates the string dy-

namics over the e↵ects of decreasing tension. Conversely,
if ⌧GW � H

�1 then the GW emission is negligible com-
pared to the e↵ects of the decreasing tension.
During the volume kination epoch,
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. (28)

As V / t during volume modulus kination and M
2
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V , it follows that the universe energy density during
volume kination satisfies
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with hence

Hence: 2H + d/dt (ln(µ)) = 2/(3t) - 1/t = -1/(3t) < 0
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The action for a Nambu-Goto string whose tension μ
depends on the background space-time coordinates (xν

where ν ¼ 0, 1, 2, 3) is

SNG ¼ −
Z

d2ξμðxνÞ ffiffiffiffiffiffi−γp
; ð1Þ

where ξa parametrize worldsheet coordinates (with a ¼ 0,
1) and γ ¼ det γab where

γab ¼ gαβ
∂xα

∂ξa
∂xβ

∂ξb
: ð2Þ

The equations of motion (also derived in [11]) are

xν;a;a þ Γν
βρðgÞγadx

β
;dx

ρ
;a þ

μ;ρ
μ
γabxρ;axν;b −

μ;ν

μ
¼ 0; ð3Þ

where xν;b ≡ ∂xν
∂ξb, Γ

ν
βρðgÞ denote the spacetime Christoffel

symbols and

xν;a;a ≡ 1
ffiffiffiffiffiffi−γp ∂að

ffiffiffiffiffiffi−γp
γabxν;bÞ: ð4Þ

For constant μ, these reduce to the ordinary string equations
of motion [1].
We now specialize to an Friedmann-Lemaitre-Robertson-

Walker spacetime metric and assume that the tension only
depends on time. We also impose the standard worldsheet
gauge conditions, identifying worldsheet time with space-
time time ξ0 ¼ x0 and applying the transversality condition
˙x⃗ · x⃗0 ¼ 0 (such that γ01 ¼ γ10 ¼ 0), where dots denote
derivatives with respect to t and primes denote derivatives
with respect to the spatial worldsheet coordinate σ.
The worldsheet metric then takes the form

ðγabÞ ¼
"
1 − a2 ˙x⃗2 0

0 −a2x⃗02

#
: ð5Þ

It is useful to define the function ε, invariant under
spacetime diffeomorphisms, as follows:

εðt; σÞ≡
ffiffiffiffiffiffiffiffiffi
−x02

ẋ2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x⃗02

1 − a2 ˙x⃗2

s

: ð6Þ

Equation (3) then takes the form:

ν ¼ 0∶
ε̇
ε
¼ ȧ

a
ð1 − 2a2 ˙x⃗2Þ − μ̇

μ
a2 ˙x⃗2; ð7Þ

ν ¼ i∶ ̈x⃗ − ε−1ðε−1x⃗0Þ0 þ
"
ε̇
ε
þ 2

ȧ
a
þ μ̇
μ

#
˙x⃗ ¼ 0: ð8Þ

We focus on the case of circular closed strings, with
periodic boundary conditions x⃗ðt; σÞ ¼ x⃗ðt; σ þ 2πÞ. With
this ansatz, the string evolution can be written as

x⃗ðt; σÞ ¼ RðtÞu⃗ðσÞ: ð9Þ

For simplicity, we restrict to a circular loop in the z plane
with u⃗ðσÞ ¼ ðsin σ; cos σ; 0Þ. Substituting this ansatz into
the equations of motion, we get

ε̇
ε
¼ H − a2Ṙ2

"
2H þ μ̇

μ

#
; ð10Þ

R̈þHṘþ ε−2Rþ
"
2H þ μ̇

μ

#
ð1 − a2Ṙ2ÞṘ ¼ 0; ð11Þ

where H ¼ ȧ=a denotes the Hubble parameter.
The definition of the parameter ε reveals its physical

interpretation. An oscillating loop has zero velocity at the
point of maximum amplitude and so

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2R2

ð1 − a2Ṙ2Þ

s

≡ aRmax ð12Þ

represents the maximum (physical) radius of the loop at
each oscillation.
Small loops (much smaller than the Hubble scale)

oscillate rapidly with time-averaging giving ha2Ṙ2i¼1=2.
In the standard case of μ̇ ¼ 0, ε̇

ε ¼ 0 and it follows from
Eq. (10) that such loops remain at constant physical size
while the scale factor grows (so they shrink in comoving
coordinates).
The right-hand side of Eq. (10) contains the most

important qualitative feature of the loop evolution with a
time-dependent tension. If

2H þ μ̇
μ
¼ 0; ð13Þ

then the physical loop radius expands at exactly the same
rate as the scale factor; loops neither grow nor shrink in
comoving coordinates. As a2Ṙ2 > 0, it follows that the
condition for a loop to grow in comoving coordinates is

2H þ μ̇
μ
< 0: ð14Þ

For small, rapidly oscillating loops, we can time-average
ha2Ṙ2i ¼ 1=2 in Eq. (10) to obtain

ε̇
ε
¼ −

1

2

μ̇
μ
: ð15Þ
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Percolating Cosmic String Networks from Kination
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We describe a new mechanism, whose ingredients are realised in string compactifications, for the
formation of cosmic (super)string networks. Oscillating string loops grow when their tension µ
decreases with time. If 2H+ µ̇/µ < 0, where H is the Hubble parameter, loops grow faster than the
scale factor and an initial population of isolated small loops (for example, produced by nucleation)
can grow, percolate and form a network. This condition is satisfied for fundamental strings in the
background of a kinating volume modulus rolling towards the asymptotic large volume region of
moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak
hierarchy problem and the need to solve the overshoot problem. The tension of such a network
today is set by the final vacuum; for phenomenologically appealing Large Volume Scenario (LVS)
vacua, this would lead to a fundamental string network with Gµ ∼ 10−10.

INTRODUCTION

Networks of cosmic strings, reviewed in [1, 2], are a
candidate for new physics on cosmological scales. Their
signatures include gravitational waves (e.g. as a candi-
date explanation of the recent NANOGrav results [3]),
CMB anisotropies and direct lensing of distant galaxies.
For Gµ ! 10−7, where G is Newton’s constant and µ
is the string tension, the existence of such networks in
the universe is compatible with current observations (the
precise limit depends on the type of loop distribution as-
sumed for the string network, e.g. see [4] for details of the
current LIGO bounds on Nambu-Goto strings). Strings
are topological defects and so are normally assumed to re-
quire a symmetry-breaking phase transition in the early
universe, with formation via the Kibble mechanism [5].
Under such phase transitions, vacuum configurations are
uncorrelated beyond the Hubble scale and the resulting
pattern of symmetry breaking results in a network of
topological defects established over large scales.

In this Letter we describe a novel scenario for the for-
mation of string networks. This scenario starts with a
population of isolated small loops in the background of a
kinating modulus field whose vev controls the tension of
the strings (for example, the volume modulus in string
compactifications). If the string tension decreases with
time, such loops grow in physical size. If the tension
decreases sufficiently rapidly, initially small loops grow
faster than the scale factor and, provided the epoch lasts
long enough, find each other, percolate and form a net-
work.

Previous papers considering strings with time-
dependent tensions include [6–11]; see also [12] for a re-
cent discussion of percolating strings arising from plasma
flow and primordial black holes, and [13] describing the
evolution of a network of cosmic string loops of fixed ten-
sion.

INITIAL CONDITIONS AND EQUATIONS OF
MOTION

Our scenario assumes an initial population of isolated,
small loops. There are various ways these could be cre-
ated – for example, quantum nucleation from the vacuum
in a time-dependent background, evaporation of ultra-
small primordial black holes or as products from annihi-
lation of stringy objects (such as brane/antibrane pairs)
at the end of inflation. We leave a detailed analysis of
scenarios for their origin for future work.
Our focus here is on the evolution and growth of such

small loops. Normally, they are regarded as irrelevant as
they would rapidly decay from gravitational wave emis-
sion. We show that with time-dependent tensions, this
no longer holds.
The action for a Nambu-Goto string whose tension µ

depends on the background space-time coordinates (xν

where ω = 0, 1, 2, 3) is

SNG = −
∫

d2ε µ(xν )
√
−γ, (1)

where εa parametrise worldsheet coordinates (with a =
0, 1) and γ = det γab where

γab = gαβ
∂xα

∂εa
∂xβ

∂εb
. (2)

The equations of motion (also derived in [11]) are:

xν
,a

;a + Γν
βρ(g) γ

adxβ
,dx

ρ
,a +

µ,ρ

µ
γabxρ

,ax
ν
,b −

µ,ν

µ
= 0, (3)

where xν
,b ≡

∂xν

∂ξb , Γ
ν
βρ(g) denote the spacetime Christoffel

symbols and

xν
,a

;a ≡
1√
−γ

∂a(
√
−γγabxν

,b). (4)

For constant µ, these reduce to the ordinary string equa-
tions of motion [1].

2

We now specialise to an FLRW spacetime metric and
assume that the tension only depends on time. We also
impose the standard worldsheet gauge conditions, iden-
tifying worldsheet time with spacetime time ω0 = x0 and
applying the transversality condition ε̇x ·εx′ = 0 (such that
γ01 = γ10 = 0), where dots denote derivatives with re-
spect to t and primes denote derivatives with respect to
the spatial worldsheet coordinate σ.
The worldsheet metric then takes the form

(γab) =

(

1− a2ε̇x2 0
0 −a2εx′2

)

. (5)

It is useful to define the function ε, invariant under space-
time diffeomorphisms, as follows,

ε(t,σ) ≡
√

−x′2

ẋ2
=

√

a2εx′2

1− a2ε̇x2
. (6)

Eq.(3) then takes the form:

ν = 0 :
ε̇

ε
=

ȧ

a
(1− 2a2ε̇x2)−

µ̇

µ
a2ε̇x2, (7)

ν = i : ε̈x− ε−1
(

ε−1εx′)′ +

(

ε̇

ε
+ 2

ȧ

a
+

µ̇

µ

)

ε̇x = 0.(8)

We focus on the case of circular closed strings, with
periodic boundary conditions εx(t,σ) = εx(t,σ+2π). With
this ansatz, the string evolution can be written as

εx(t,σ) = R(t)εu(σ). (9)

For simplicity, we restrict to a circular loop in the z-plane
with εu(σ) = (sinσ, cosσ, 0). Substituting this ansatz into
the equations of motion, we get

ε̇

ε
= H − a2Ṙ2

(

2H +
µ̇

µ

)

, (10)

R̈+HṘ+ ε−2R+

(

2H +
µ̇

µ

)

(1− a2Ṙ2)Ṙ = 0, (11)

where H = ȧ/a denotes the Hubble parameter.
The definition of the parameter ε reveals its physical

interpretation. An oscillating loop has zero velocity at
the point of maximum amplitude and so

ε =

√

a2R2

(1 − a2Ṙ2)
≡ aRmax (12)

represents the maximum (physical) radius of the loop at
each oscillation.
Small loops (much smaller than the Hubble scale) os-

cillate rapidly with time-averaging giving 〈a2Ṙ2〉 = 1/2.
In the standard case of µ̇ = 0, ε̇

ε = 0 and it follows from
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average 〈a2Ṙ2〉 = 1/2 in Eq.(10) to obtain

ε̇

ε
= −

1

2

µ̇

µ
. (15)

In terms of the physical length L = 2πε, we have

L(t) = Li

√

Gµi

Gµ(t)
. (16)

where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
frequency of oscillation is fast compared to the Hubble
time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging
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ẋ2
=

√

a2εx′2

1− a2ε̇x2
. (6)

Eq.(3) then takes the form:

ν = 0 :
ε̇

ε
=

ȧ
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ȧ

a
+

µ̇

µ

)

ε̇x = 0.(8)

We focus on the case of circular closed strings, with
periodic boundary conditions εx(t,σ) = εx(t,σ+2π). With
this ansatz, the string evolution can be written as

εx(t,σ) = R(t)εu(σ). (9)

For simplicity, we restrict to a circular loop in the z-plane
with εu(σ) = (sinσ, cosσ, 0). Substituting this ansatz into
the equations of motion, we get

ε̇

ε
= H − a2Ṙ2
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where H = ȧ/a denotes the Hubble parameter.
The definition of the parameter ε reveals its physical

interpretation. An oscillating loop has zero velocity at
the point of maximum amplitude and so

ε =

√

a2R2

(1 − a2Ṙ2)
≡ aRmax (12)

represents the maximum (physical) radius of the loop at
each oscillation.
Small loops (much smaller than the Hubble scale) os-

cillate rapidly with time-averaging giving 〈a2Ṙ2〉 = 1/2.
In the standard case of µ̇ = 0, ε̇

ε = 0 and it follows from
Eq.(10) that such loops remain at constant physical size

while the scale factor grows (so they shrink in comoving
coordinates).
The right-hand side of Eq.(10) contains the most im-

portant qualitative feature of the loop evolution with a
time-dependent tension. If

2H +
µ̇

µ
= 0, (13)

then the physical loop radius expands at exactly the same
rate as the scale factor; loops neither grow nor shrink in
comoving coordinates. As a2Ṙ2 > 0, it follows that the
condition for a loop to grow in comoving coordinates is

2H +
µ̇
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< 0. (14)

For small, rapidly oscillating loops, we can time-
average 〈a2Ṙ2〉 = 1/2 in Eq.(10) to obtain
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. (15)

In terms of the physical length L = 2πε, we have

L(t) = Li

√
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Gµ(t)
. (16)

where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
frequency of oscillation is fast compared to the Hubble
time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging

〈a2Ṙ2〉 = 1/2.

KINATION IN STRING THEORY

What are the optimal conditions for the growth equa-
tion

2H +
µ̇
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< 0 (17)

to be satisfied? It is clear that this prefers (a) H to be
as small as possible and (b) the rate of change of µ to
be as fast as possible. As to point (a), H(t) is always
set by the expansion rate. Compared to other fluids,
the slowest expansion rate is obtained for kination where
the energy density is dominated by the kinetic energy
of a rolling scalar (with a(t) ∼ t1/3 compared to e.g.
a(t) ∼ t1/2 for radiation). As to point (b), in string
theory, all physical scales (including string tensions) arise

as expectation values of scalar fields Φ (moduli). | µ̇(Φ)
µ(Φ) | is

maximised when the field Φ rolls as fast as possible; the
limiting case is that of kination, when the entire energy
density of the universe lies in a rolling scalar field.
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ε = 0 and it follows from
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time-dependent tension. If

2H +
µ̇

µ
= 0, (13)

then the physical loop radius expands at exactly the same
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condition for a loop to grow in comoving coordinates is

2H +
µ̇

µ
< 0. (14)

For small, rapidly oscillating loops, we can time-
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where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
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time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging
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to be satisfied? It is clear that this prefers (a) H to be
as small as possible and (b) the rate of change of µ to
be as fast as possible. As to point (a), H(t) is always
set by the expansion rate. Compared to other fluids,
the slowest expansion rate is obtained for kination where
the energy density is dominated by the kinetic energy
of a rolling scalar (with a(t) ∼ t1/3 compared to e.g.
a(t) ∼ t1/2 for radiation). As to point (b), in string
theory, all physical scales (including string tensions) arise

as expectation values of scalar fields Φ (moduli). | µ̇(Φ)
µ(Φ) | is

maximised when the field Φ rolls as fast as possible; the
limiting case is that of kination, when the entire energy
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γ01 = γ10 = 0), where dots denote derivatives with re-
spect to t and primes denote derivatives with respect to
the spatial worldsheet coordinate σ.
The worldsheet metric then takes the form

(γab) =

(

1− a2ε̇x2 0
0 −a2εx′2

)

. (5)

It is useful to define the function ε, invariant under space-
time diffeomorphisms, as follows,

ε(t,σ) ≡
√

−x′2

ẋ2
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We focus on the case of circular closed strings, with
periodic boundary conditions εx(t,σ) = εx(t,σ+2π). With
this ansatz, the string evolution can be written as
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where H = ȧ/a denotes the Hubble parameter.
The definition of the parameter ε reveals its physical
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The right-hand side of Eq.(10) contains the most im-

portant qualitative feature of the loop evolution with a
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where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
frequency of oscillation is fast compared to the Hubble
time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging
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to be satisfied? It is clear that this prefers (a) H to be
as small as possible and (b) the rate of change of µ to
be as fast as possible. As to point (a), H(t) is always
set by the expansion rate. Compared to other fluids,
the slowest expansion rate is obtained for kination where
the energy density is dominated by the kinetic energy
of a rolling scalar (with a(t) ∼ t1/3 compared to e.g.
a(t) ∼ t1/2 for radiation). As to point (b), in string
theory, all physical scales (including string tensions) arise

as expectation values of scalar fields Φ (moduli). | µ̇(Φ)
µ(Φ) | is

maximised when the field Φ rolls as fast as possible; the
limiting case is that of kination, when the entire energy
density of the universe lies in a rolling scalar field.
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The right-hand side of Eq.(10) contains the most im-
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rate as the scale factor; loops neither grow nor shrink in
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For small, rapidly oscillating loops, we can time-
average 〈a2Ṙ2〉 = 1/2 in Eq.(10) to obtain
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In terms of the physical length L = 2πε, we have
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where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
frequency of oscillation is fast compared to the Hubble
time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging

〈a2Ṙ2〉 = 1/2.

KINATION IN STRING THEORY

What are the optimal conditions for the growth equa-
tion

2H +
µ̇

µ
< 0 (17)

to be satisfied? It is clear that this prefers (a) H to be
as small as possible and (b) the rate of change of µ to
be as fast as possible. As to point (a), H(t) is always
set by the expansion rate. Compared to other fluids,
the slowest expansion rate is obtained for kination where
the energy density is dominated by the kinetic energy
of a rolling scalar (with a(t) ∼ t1/3 compared to e.g.
a(t) ∼ t1/2 for radiation). As to point (b), in string
theory, all physical scales (including string tensions) arise

as expectation values of scalar fields Φ (moduli). | µ̇(Φ)
µ(Φ) | is

maximised when the field Φ rolls as fast as possible; the
limiting case is that of kination, when the entire energy
density of the universe lies in a rolling scalar field.

3

This suggests that a kination environment (see [14] for
a recent general review of kination) gives the best op-
portunity to satisfy Eq.(17). In the 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
the asymptotic boundaries of moduli space: in the strict
asymptotic limit, all scales vanish compared to MP .
As mentioned earlier, during a kination epoch, the uni-

verse is dominated by the kinetic energy of the rolling
modulus,

Φ = Φi +

√

2

3
MP ln

(

t

ti

)

, (18)

with Φi the initial vev at time ti. We focus on the case
where Φ is the volume modulus of the compactification
evolving towards large compactifiction radii. This direc-
tion is well motivated: the effective field theory becomes
better controlled at large radii. Such cosmologies are also
appealing from both phenomenological and formal per-
spectives [15].
Specialising to IIB models where moduli stabilisation

is best understood, the canonically normalised modulus

Φ relates to the compactification volume as Φ ∼
√

2
3 lnV

and so the volume evolves as V ∝ t during this epoch
(see [16] and [17] for more detailed discussions).
The fundamental string scale relates to the 4d Planck

scale as

ms ∼
MP√
V
. (19)

In string compactifications, all scales are tied to the fun-
damental scale ms. As the volume increases, the string
scale (in the 4d Einstein frame) decreases. In particu-
lar, the tension of string-like objects in the 4d theory
decreases.
The most obvious string-like objects in string theory

are fundamental strings, with a tension

Gµ ∼ m2
s. (20)

During a kination epoch this tension behaves as

Gµ ∼ t−1, (21)

and so

2H +
µ̇

µ
= −H, (22)

satisfying the growth condition Eq.(17).
Note there is one further type of string present as a

degree of freedom in IIB compactifications. This is the
axionic string associated to the volume modulus (for a
recent review of axions and axion strings in string theory

see [18]). The Kähler potential K = −3 ln(T + T̄ ), with
T = ωb + iab, gives the Lagrangian

L =
3

4ω2b
εµωbε

µωb +
3

4ω2b
εµabε

µab, (23)

from which it follows that the volume axion ab has decay
constant fa ∼ ω−1

b ∼ V−2/3. The presence of this axion
implies the existence of associated axionic strings in the
spectrum.
If the tension were given by Gµ ∼ f2

a , then during
the kination epoch we would have Gµ ∼ M2

PV−4/3 ∼
M2

P t
−4/3, falling off more rapidly than for fundamental

strings. However, the cores of such stringy axionic strings
tend to involve wrapped branes (e.g. see [19]) such as
a D3 brane wrapped on an internal 2-cycle to create a
string in the non-compact dimensions. A string created
from a D3 brane wrapped on an internal large 2-cycle
has a tension Gµ ∼ R2m2

s and so evolves as Gµ ∼ t−2/3

during a kination epoch. While the tension does decrease,
such strings are not in the percolation regime as 2H+ µ̇

µ =
0.
We therefore focus on fundamental strings, for which

the physical length of a loop grows as

L(t) = Li

(

t

ti

)1/2

. (24)

As the scale factor grows as a(t) ∼ t1/3, in comoving
coordinates the radius grows as

Rmax(t) = Rmax,i

(

t

ti

)1/6

. (25)

Note that the decreasing tension makes the loops grow
faster than the scale factor but not faster than the Hubble
horizon. As a result, initially subhorizon loops become
more and more subhorizon throughout their evolution
and the fast oscillations will remain fast (indeed, becom-
ing even quicker in comparison to the Hubble time).

GRAVITATIONAL WAVE EMISSION

Oscillating loops radiate energy and so shrink due to
gravitational wave (GW) emission. It is important to
check that this effect does not dominate the growth from
the decreasing tension. The rate of power loss from a
loop from GW emission is written

PGW = ΓGµ2, (26)

where Γ is a numerical factor that depends on the pre-
cise loop configuration. Nambu-Goto simulations suggest
Γ ∼ 50− 75 [1].
In the case of a time-dependent tension, additional

terms are expected due to the change in amplitude. How-
ever, for loops well inside the horizon the oscillation rate

3

This suggests that a kination environment (see [14] for
a recent general review of kination) gives the best op-
portunity to satisfy Eq.(17). In the 4d Einstein frame
with constant MP , the requirement that µ̇

µ be negative
implies that the fields roll in the direction of decreas-
ing tension. In string theory, this direction is towards
the asymptotic boundaries of moduli space: in the strict
asymptotic limit, all scales vanish compared to MP .
As mentioned earlier, during a kination epoch, the uni-

verse is dominated by the kinetic energy of the rolling
modulus,

Φ = Φi +

√

2

3
MP ln

(

t

ti

)

, (18)

with Φi the initial vev at time ti. We focus on the case
where Φ is the volume modulus of the compactification
evolving towards large compactifiction radii. This direc-
tion is well motivated: the effective field theory becomes
better controlled at large radii. Such cosmologies are also
appealing from both phenomenological and formal per-
spectives [15].
Specialising to IIB models where moduli stabilisation

is best understood, the canonically normalised modulus

Φ relates to the compactification volume as Φ ∼
√

2
3 lnV

and so the volume evolves as V ∝ t during this epoch
(see [16] and [17] for more detailed discussions).
The fundamental string scale relates to the 4d Planck

scale as

ms ∼
MP√
V
. (19)

In string compactifications, all scales are tied to the fun-
damental scale ms. As the volume increases, the string
scale (in the 4d Einstein frame) decreases. In particu-
lar, the tension of string-like objects in the 4d theory
decreases.
The most obvious string-like objects in string theory

are fundamental strings, with a tension

Gµ ∼ m2
s. (20)

During a kination epoch this tension behaves as

Gµ ∼ t−1, (21)

and so

2H +
µ̇

µ
= −H, (22)

satisfying the growth condition Eq.(17).
Note there is one further type of string present as a

degree of freedom in IIB compactifications. This is the
axionic string associated to the volume modulus (for a
recent review of axions and axion strings in string theory

see [18]). The Kähler potential K = −3 ln(T + T̄ ), with
T = ωb + iab, gives the Lagrangian

L =
3

4ω2b
εµωbε

µωb +
3

4ω2b
εµabε

µab, (23)

from which it follows that the volume axion ab has decay
constant fa ∼ ω−1

b ∼ V−2/3. The presence of this axion
implies the existence of associated axionic strings in the
spectrum.
If the tension were given by Gµ ∼ f2

a , then during
the kination epoch we would have Gµ ∼ M2

PV−4/3 ∼
M2

P t
−4/3, falling off more rapidly than for fundamental

strings. However, the cores of such stringy axionic strings
tend to involve wrapped branes (e.g. see [19]) such as
a D3 brane wrapped on an internal 2-cycle to create a
string in the non-compact dimensions. A string created
from a D3 brane wrapped on an internal large 2-cycle
has a tension Gµ ∼ R2m2

s and so evolves as Gµ ∼ t−2/3

during a kination epoch. While the tension does decrease,
such strings are not in the percolation regime as 2H+ µ̇

µ =
0.
We therefore focus on fundamental strings, for which

the physical length of a loop grows as

L(t) = Li

(

t

ti

)1/2

. (24)

As the scale factor grows as a(t) ∼ t1/3, in comoving
coordinates the radius grows as

Rmax(t) = Rmax,i

(

t

ti

)1/6

. (25)

Note that the decreasing tension makes the loops grow
faster than the scale factor but not faster than the Hubble
horizon. As a result, initially subhorizon loops become
more and more subhorizon throughout their evolution
and the fast oscillations will remain fast (indeed, becom-
ing even quicker in comparison to the Hubble time).

GRAVITATIONAL WAVE EMISSION

Oscillating loops radiate energy and so shrink due to
gravitational wave (GW) emission. It is important to
check that this effect does not dominate the growth from
the decreasing tension. The rate of power loss from a
loop from GW emission is written

PGW = ΓGµ2, (26)

where Γ is a numerical factor that depends on the pre-
cise loop configuration. Nambu-Goto simulations suggest
Γ ∼ 50− 75 [1].
In the case of a time-dependent tension, additional

terms are expected due to the change in amplitude. How-
ever, for loops well inside the horizon the oscillation rate

Nabu Goto action but allowing 
time dependent tension

A few details

Eqns of motion:

World sheet metric 
in suitable gauge: Define:

Consider circular loop:

Eqns of motion: with

Hence when 

with and



2

We now specialise to an FLRW spacetime metric and
assume that the tension only depends on time. We also
impose the standard worldsheet gauge conditions, iden-
tifying worldsheet time with spacetime time ω0 = x0 and
applying the transversality condition ε̇x ·εx′ = 0 (such that
γ01 = γ10 = 0), where dots denote derivatives with re-
spect to t and primes denote derivatives with respect to
the spatial worldsheet coordinate σ.
The worldsheet metric then takes the form
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√

a2εx′2

1− a2ε̇x2
. (6)

Eq.(3) then takes the form:

ν = 0 :
ε̇

ε
=

ȧ

a
(1− 2a2ε̇x2)−

µ̇

µ
a2ε̇x2, (7)

ν = i : ε̈x− ε−1
(

ε−1εx′)′ +

(

ε̇

ε
+ 2

ȧ

a
+

µ̇

µ

)

ε̇x = 0.(8)

We focus on the case of circular closed strings, with
periodic boundary conditions εx(t,σ) = εx(t,σ+2π). With
this ansatz, the string evolution can be written as

εx(t,σ) = R(t)εu(σ). (9)

For simplicity, we restrict to a circular loop in the z-plane
with εu(σ) = (sinσ, cosσ, 0). Substituting this ansatz into
the equations of motion, we get

ε̇

ε
= H − a2Ṙ2

(

2H +
µ̇

µ

)

, (10)

R̈+HṘ+ ε−2R+

(

2H +
µ̇

µ

)

(1− a2Ṙ2)Ṙ = 0, (11)

where H = ȧ/a denotes the Hubble parameter.
The definition of the parameter ε reveals its physical

interpretation. An oscillating loop has zero velocity at
the point of maximum amplitude and so

ε =

√

a2R2

(1 − a2Ṙ2)
≡ aRmax (12)

represents the maximum (physical) radius of the loop at
each oscillation.
Small loops (much smaller than the Hubble scale) os-

cillate rapidly with time-averaging giving 〈a2Ṙ2〉 = 1/2.
In the standard case of µ̇ = 0, ε̇

ε = 0 and it follows from
Eq.(10) that such loops remain at constant physical size

while the scale factor grows (so they shrink in comoving
coordinates).
The right-hand side of Eq.(10) contains the most im-

portant qualitative feature of the loop evolution with a
time-dependent tension. If

2H +
µ̇

µ
= 0, (13)

then the physical loop radius expands at exactly the same
rate as the scale factor; loops neither grow nor shrink in
comoving coordinates. As a2Ṙ2 > 0, it follows that the
condition for a loop to grow in comoving coordinates is

2H +
µ̇

µ
< 0. (14)

For small, rapidly oscillating loops, we can time-
average 〈a2Ṙ2〉 = 1/2 in Eq.(10) to obtain

ε̇

ε
= −

1

2

µ̇

µ
. (15)

In terms of the physical length L = 2πε, we have

L(t) = Li

√

Gµi

Gµ(t)
. (16)

where Li is the initial loop length and µi the initial loop
tension. As we will see, in volume modulus kination
| µ̇µ | = 3H and thus, for loops well inside the horizon the
frequency of oscillation is fast compared to the Hubble
time, ω ∼ 1/ε & H ∼ | µ̇µ |, justifying the time-averaging

〈a2Ṙ2〉 = 1/2.

KINATION IN STRING THEORY

What are the optimal conditions for the growth equa-
tion

2H +
µ̇

µ
< 0 (17)

to be satisfied? It is clear that this prefers (a) H to be
as small as possible and (b) the rate of change of µ to
be as fast as possible. As to point (a), H(t) is always
set by the expansion rate. Compared to other fluids,
the slowest expansion rate is obtained for kination where
the energy density is dominated by the kinetic energy
of a rolling scalar (with a(t) ∼ t1/3 compared to e.g.
a(t) ∼ t1/2 for radiation). As to point (b), in string
theory, all physical scales (including string tensions) arise

as expectation values of scalar fields Φ (moduli). | µ̇(Φ)
µ(Φ) | is

maximised when the field Φ rolls as fast as possible; the
limiting case is that of kination, when the entire energy
density of the universe lies in a rolling scalar field.

We want :

Make H as small as possible and d/dt(In μ) as large and negative as possible 

Volume Kination is ideal as a(t) ~ t1/3 which is slower than any other fluid.

All the energy is in the kinetic energy of a modulus field, and the tension depends on the field, so the rate of change of the tension is maximised 

During volume kination, the volume modulus rolls down an exponential potential 

3 Kination and Cosmic String Loops
In this section, we will study the fixed points for the evolution of an FLRW universe filled with
a scalar field ω under a certain potential V (ω), in the presence of an energy density ε(a,ω) in
cosmic string loops whose tension depends on the modulus ω. We know that in the absence of said
density of loops, the system can end up in a kination epoch, in which all the energy is in the kinetic
energy of the scalar field, or a tracker solution, in the case where the potential V (ω) is not steep
enough such that a certain fraction of the energy of the universe remains in it. When introducing
a population of cosmic string loops, we will find that given enough time, the system can evolve to
a new tracker solution in which an order one of the energy is stored in the loops.

3.1 Friedmann equations
A population of cosmic string loops with energy density ε has an equation of state-like matter,
p = 0. This remains true in the case where they have a time-dependent tension, provided their
oscillations are fast enough to allow for an averaged velocity over oscillations like →v

2
↑ = 1/2,

which is the case for sub-horizon loops if the tension changes at a rate slower than or comparable
to Hubble. Recall their frequency of oscillation was set by their physical size.

We can write the dependence of the tension and the energy density in the modulus ω in terms of
the parameter ϑ as follows,

µ(!) = M
2
P
e
→
↑
6ω!/MP , (1)

ε(a,!) = n · µ · ϖ = εi ·

(
ai

a

)→3
· e

→
↓

3/2ω (!→!i)/MP . (2)

where we have used the fact that the length evolves due to the evolution of the tension,

ϖ(!) = ϖi

√
µi

µ(!)
. (3)

We have also assume there is no loop production, such that the number density gets diluted by
the expansion of the universe. We will discuss this later. Loops of fundamental strings would
correspond to ϑ = 1/2, as their tension is set by the string scale, ms ↔ MP /

↓
V. If we assumed

the scalar field to be the canonically normalised volume modulus, its potential can be written as
V (!) = M

4
P
e
→
↓

3/2 ε!/MP , with ϱ = 3 corresponding to the case of LVS. The evolution of loops
of fundamental strings in this background was studied in [7].

The Friedman and continuity equations for this energy content are given below,

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↓(!) +

ςε

ς!

0 = ε̇+ 3Hε↗
ςε

ς!
!̇

(4)

(5)

(6)

(7)

where we need to solve for a(t) and !(t). In [9], the fixed points for a similar set of equations were
studied, where in additional a scalar field with a certain potential, the universe was filled with a
barotropic fluid. Here we consider the back-reaction of cosmic string loops, which in contrast to a
normal fluid, are coupled to the modulus.

3

Small loops of cosmic superstring grow relative to the scale factor

As they grow, they become more important, rather than simply evaporating through GW emission.

Eventually they percolate forming a new network of strings before reheating.

For related ideas with fixed tension strings see EJC, Kibble and Steer (1998), Frey et al. (2023 and 2024) : 
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String tension:

Loop density:

Loop length:

Moduli potenital:

Friedmann, accn 
and fluid equations:

In the presence of an exponential potential, we have an evolving network of loops with time dependent tensions, with background radiation. 
What are the stable attractors of such a network ? With no loops we know there are tracker solutions where the field mimics the dominant 

radiation or matter, but in the presence of loops ?

[λ=3 corresponds to LVS where potential falls off as 𝒱-3] 

[β depends on particular model - is 1/2 in LVS] 

fluid, with prad = 1
3ωrad.

6 The corresponding Friedmann and continuity equations are

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3
ωrad(a) ,

0 = !̈+ 3H!̇+
εV (!)

ε!
+

εωloops

ε!
,

0 = ω̇ω + 3Hωω →
εωloops

ε!
!̇ ,

0 = ω̇rad + 4Hωrad .

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

3.1 Finding the fixed points

To search for the fixed points of the tracker solutions, we define a similar change of variables
to before with an additional variable w corresponding to the energy density in radiation:

x
2
↑ !̇2

/6M2
PH

2
, (3.6)

y
2
↑ V/3M2

PH
2
, (3.7)

z
2
↑ ωloops/3M

2
PH

2
, (3.8)

w
2
↑ ωrad/3M

2
PH

2
, (3.9)

such that the constraint given by the Friedman equation is now x
2 + y

2 + z
2 + w

2 = 1.
In terms of these variables, and still considering theories in which ! has an exponential
potential given by Eq. (2.3), the equations of motion become (with derivatives with respect
to N = ln a)

x
→ =

3

2

[
x(x2 → y

2 +
w

2

3
→ 1) + ϑ(1→ x

2
→ w

2) + (ϖ→ ϑ)y2)

]
, (3.10)

y
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3

2
y

[
x
2
→ y

2 +
w

2

3
→ ϖx+ 1

]
, (3.11)

w
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3

2
w

[
x
2
→ y

2 +
1

3
(w2

→ 1)

]
, (3.12)

with z
2 = 1→ x

2
→ y

2
→ w

2. These equations describe the system with the modulus and a
background of both string loops and radiation.

The fixed points for the absence of radiation previously found in Table 1 will remain fixed
points of this system when w = 0. However, their stability now has to be reevaluated
given the presence of additional fixed points with some energy fraction in radiation. These
additional fixed points are summarised in Table 2.

6
We assume that the energy density in radiation is dominated by a pre-existing component, rather

than gravitational waves produced by the loops during the era of interest (which would enter the evolution

equations in a more complicated way). At a fixed point with ωloops →= 0 such gravitational waves would be

continually sourced, but are unimportant provided the fixed point is stable to radiation perturbations.
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We assume that the energy density in radiation is dominated by a pre-existing component, rather

than gravitational waves produced by the loops during the era of interest (which would enter the evolution

equations in a more complicated way). At a fixed point with ωloops →= 0 such gravitational waves would be

continually sourced, but are unimportant provided the fixed point is stable to radiation perturbations.
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3ωrad.
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




3M2
PH

2 =
!̇2

2
+ V (!) + ωloops(a,!) + ωrad(a) ,

→2M2
P Ḣ = !̇2 + ωloops(a,!) +

4

3
ωrad(a) ,

0 = !̈+ 3H!̇+
εV (!)

ε!
+

εωloops

ε!
,

0 = ω̇ω + 3Hωω →
εωloops

ε!
!̇ ,

0 = ω̇rad + 4Hωrad .

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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2
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/6M2
PH

2
, (3.6)

y
2
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PH
2
, (3.7)

z
2
↑ ωloops/3M

2
PH

2
, (3.8)

w
2
↑ ωrad/3M

2
PH

2
, (3.9)
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2 + y

2 + z
2 + w

2 = 1.
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]
, (3.10)

y
→ =

3

2
y

[
x
2
→ y

2 +
w

2
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1

3
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]
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2. These equations describe the system with the modulus and a
background of both string loops and radiation.

The fixed points for the absence of radiation previously found in Table 1 will remain fixed
points of this system when w = 0. However, their stability now has to be reevaluated
given the presence of additional fixed points with some energy fraction in radiation. These
additional fixed points are summarised in Table 2.
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equations in a more complicated way). At a fixed point with ωloops →= 0 such gravitational waves would be

continually sourced, but are unimportant provided the fixed point is stable to radiation perturbations.
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Fixed point solution including string loop tracker - enter reheating with non - negligible density of loops:

Fixed points !V !!̇ !loops !rad Existence

conditions

E. Radiation Tracker
8

9ω2
16
9ω2 0 1→ 8

3ω2 ↑ω ↓= ω

4 ,

2
√

2
3 ↔ ε

F. Loop-Radiation Tracker y
2
fp

16
9ω2

32
9ω2 → 4y2fp 1→ 16

3ω2 + 3y2fp ω = ω

4 ,

2
√

2
3 ↔ ε

G. Mixed Tracker II 0 1
9ε2

2
9ε2 1→ 1

3ε2 ↑ε, 1→
3
↔ ω

H. Radiation Domination 0 0 0 1 ↑ε,ω

Table 2. Fixed points in the evolution of the system with a scalar field ” on an exponential

potential V (”), radiation ϑrad and a population of string loops (energy density ϑloops) coupled

to the modulus ”. The parameters ω and ε are defined as ε ↗ →
√

2/3MP (ϖ!V )/V and ω ↗

→
√

2/3MP (ϖ!ϑloops)/ϑloops.

The fixed point E, on which there is no energy density in string loops, is the well-known
tracking solution of Ref. [41]. In contrast, the fixed points F and G correspond to tracker
solutions in which the energy density of the universe is in the form of both radiation and
string loops.

E. Radiation Tracker

In the absence of the string loops fixed point E, the well-known tracker solution of [41],
is an attractor solution. However, this is not automatic in the presence of strings loops.
The stability of the fixed point in this case can be determined from the evolution of the
individual energy densities,

ϑrad ↘ a
↑4

, (3.13)
ϑloops ↘ a

↑3
· V

↑ε
, (3.14)

V ↘ V
↑ω

. (3.15)

As on this tracker the energy density in radiation remains at a constant ratio to the back-
ground, we know that a ↘ t

1/2. Since the fraction in the potential energy also remains
constant relative to the background, it also follows that V ↘ t

2/ω
↘ a

4/ω, which implies

ϑloops ↘ t
↑3/2

· t
↑2ε/ω

↘ a
↑(3+4ε/ω)

. (3.16)

As a result, when ω < ε/4, the string loops redshift slower than radiation and the pure-
radiation tracker is unstable (we will see this holds for fundamental strings in LVS). On
the other hand, if ω > ε/4, string loops redshift faster than radiation and therefore do
not destabilize the system once it gets to this attractor. Instead, string loops are diluted
relative to the background by the cosmological expansion (which is driven by the equation
of state corresponding to radiation).

We consider the boundary case ω = ε/4, which we call loop-radiation tracker, next.
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Fixed points !V !!̇ !loops Existence conditions

A. Kination 0 1 0 →ω,ε

B. String Loop tracker 0 ε
2 1↑ ε

2
→ω, ε ↓ 1

C. Scalar field domination 1↑ ω
2

4
ω
2

4 0 →ε , ω ↓ 2

D. Mixed tracker I
ε
2→ωε+1
(ω→ε)2

1
(ω→ε)2

ω
2→ωε→2
(ω→ε)2 ε ↓ 1,

ε

2 +
√

ε2

4 + 2 ↓ ω ↓ ε + 1
ε

Table 1. Fixed points for the evolution of the system with a modulus field ” with an expo-

nential potential energy V (”) and a population of string loops (of energy density ϑloops) cou-

pled to the modulus ”. The parameters ε and ω are defined as ω ↔ ↑
√
2/3MP (ϖ!V )/V and

ε ↔ ↑
√

2/3MP (ϖ!ϑloops)/ϑloops .

Moreover, for all values of ω the kination fixed point is also unstable if there is any initial
energy density in loops. In such a case, the system is driven to the string loop or mixed
trackers (B and D respectively) presented in Table 1.

B. String loop tracker

The second fixed point is novel and interesting. Energy is distributed between strings and
the kinetic energy of the scalar field. This fixed point exists for ε ↓ 1. Otherwise, if ε > 1,
the energy density in loops decreases too fast and so cannot remain at a constant fraction
of the total energy density of the universe.

This fixed point exists for all values of ω. If the potential is not steep enough the string
loop tracker can be unstable, with the system evolving towards the mixed tracker instead
if there is some initial energy density in the form of potential energy. However, we will see
that fixed point B is the global attractor in the case of fundamental strings in LVS.

C. Scalar field domination

This is a standard fixed point that exists in the absence of string loops for potentials with
ω ↓ 2, with the total energy distributed between the kinetic and potential energy of the
scalar field.

D. Mixed tracker I

We call the final fixed point the mixed tracker because the energy is distributed between
the potential energy of the scalar field, the kinetic energy of the scalar field and the loops.

Similarly to the string loop tracker, it exists if ε ↓ 1 as otherwise the energy density
in loops decreases too fast for a fixed point to exist. Additionally, for this fixed point to ex-
ist the steepness of the potential ω must take values in the range ε

2 +
√

ε2

4 + 2 ↓ ω ↓ ε+ 1
ε
.

If the lower bound of this inequality is violated the potential redshifts slowly enough to
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Evolution in absence of radiation

Evolution in presence of radiation



going through a transient radiation tracker before eventually evolving towards the string
loop tracker as expected.

Figure 5. Evolution in phase space towards the loop tracker attractor (B) through a transient

radiation tracker (E) for fundamental strings in LVS (with ω = 1/2 and ε = 3).

Figure 6. Evolution of the energy fractions starting from kination and going towards a string loop

tracker through a transient radiation tracker, characterised by !r → 0.7 and !!̇ = 2!V → 0.2, for

fundamental strings in LVS (ω = 1/2 and ε = 3).

Late-Time evolution

Finally, we can return to the question of late-time evolution. The maximum amount of time
since kination starts until the modulus gets stabilised, due to nucleosynthesis constraints,
is tf/ti ↑ 1010 which translates into a constraint on the number of e-folds ”N ↑ O(1↓10).

It is therefore reasonable that in the process of going through a radiation tracker and
reaching the string loop tracker (which acts as a weak final attractor) the potential en-
ergy has not become completely negligible once the modulus reaches its minimum, making
moduli stabilisation possible. We leave a full analysis to upcoming work: from our current
perspective, the key new possibility given by the existence of the string loop tracker solution
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From kination through transient radiation tracker through to late time string loop tracker - loop energy density grows relative to the background - 
the stable attractor is the loop tracker with 

Ωloops = 3/4, Ωkin = 1/4
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perspective, the key new possibility given by the existence of the string loop tracker solution

– 16 –

For those who like phase plane plots - the same evolution showing the stability of the loop tracker

We have seen that:
Can start with a volume modulus rolling down an exponential potential

With a small initial population of fundamental string loops formed towards the end of inflation

Leads to an attractor which is a loop tracker solution with 75% of the stored energy density being in the form of superstring loops, 
an interesting new way to enter reheating



They leave an imprint in the GW bgd as they oscillate grow, then decay - test case from LVS.

Just started analysing the possible signals.

CMB Constraint

=1010=107=105

=1012
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10-12
10-10
10-8
10-6

2 × 1010 3 × 109 9 × 108 7 × 108 6 × 108

f / Hz

dΩ0GW h 2dlog f

T / GeV

Figure 1. Gravitational power spectrum of a population of loops emitting during moduli dom-

ination given a volume of the extra dimensions V → 10
5→12

in string units and a decay rate

!ω → (MP /mω)
4/3

·M
2
P /m

3
ω. The size of the loops is taken to be ω =

↑
Gµ.

Figure 2. Gravitational power spectrum of a cosmic string network of fundamental strings in a

scaling regime (orange) and of a population of loops emitting during moduli domination (blue)

given a volume of the extra dimensions V → 10
10

in string units and a short-lived volume modulus.

The size of the loops is taken to be ω =
↑
Gµ.
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Preliminary - Conlon, EJC, Hardy and Sanchez Gonzalez - [In preparation 2025].

Preliminary
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D-brane-antibrane inflation leads to formation of D1 branes in non-compact 
space [Dvali & Tye; Burgess et al; Majumdar & Davis; Jones, Sarangi &Tye; Stoica & Tye]

In general for cosmic strings to be cosmologically interesting today 
we require that they are not too massive (from CMB constraints), 
are produced after inflation (or survive inflation) and are stable 

enough to survive until today. Depending on the model, if the CY 
space has sufficiently warped throat regions there can be 

fundamental F strings, D1 branes or combinations of (p,q) strings.  
[Dvali and Vilenkin (2004); EJC,Myers and Polchinski (2004)]. 

Strings surviving inflation: - constant tension case

Find low string tensions - Gµ < 10-9
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The cosmic superstring 
network evolves, reaches 
scaling, and as it does so 
emits gravitational waves 

which are redshifted into the 
nanohertz regime, ready to 

be discovered by 
NANOGrav if we are 

lucky ! [Avgoustidis et al (2025)]
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FIG. 2: Plots showing the gravitational wave background spectra generated at di!erent string coupling constants at

string tension Gµ1 = 10→9 and loop size ωi = 2”Gµi. The solid lines show the GWs from the 7-string model and the

dashed lines from the 3-string model.

Thus, the physical loop sizes di!er (between this work and

reference [27]) by a factor of twice the time-normalised

correlation length, 2εi, in the small loop limit, and by

a factor of 3.7 in the large loop limit. Other, smaller,

di!erences arise from our more accurate modelling of the

cosmic superstring network achieved by (a) including de-

cay processes of heavier strings down to the three lightest

species (as discussed above), and (b) taking into account

the dependence of the VOS parameters c̃i, d̃
k
ij on the

scaling velocities of each string species.

B. Fixing model parameters

We have demonstrated that it is necessary to include

several species of heavier strings when solving the VOS

equations but not necessary to calculate the gravitational

wave contributions of more than the three lightest string

species. Before we proceed with fitting the model to

NG15 data, we need to discuss the remaining model pa-

rameters {”, B,w, q,ωi}. Since we will already be fitting

at least a 2D space of fundamental string tension and

string coupling, it is computationally unfeasible to keep

all of the above as free parameters and most will need to

be fixed at physically motivated values.

1. GW emission power, !

” gives the total GW power emitted by string loops

over the course of their life (in units of Gµ) and has

usually been considered as a constant of order O(50).

Recent numerical simulations exploring the e!ect of grav-

itational back-reactions on Nambu-Goto cosmic string

loops have found that ” may vary with time [49]. The

potential e!ect of a time-evolving ” on the gravitational

wave background is to suppress the signal with up to a

→ 30% decrease at high frequencies. This paper mainly

focuses on the low-frequency end of the GWB spectrum,

as that is the domain in which the potential signature of

heavier string species is clearest and where NANOGrav

has found evidence for the SGWB. As such, we will fix

” = 50 for all string species.

2. Loop size, ωi

One of the most important parameters in determining

the shape and magnitude of the GW background spec-

trum is the size of string loops when they are chopped

o! from the string network. Motivated by the scaling

behaviour of cosmic (super)string networks, it is com-

monly assumed that their size is a constant fraction of

the string correlation length at the time of birth so that

li(tb) = ωitb, where ωi is a constant. The exact value

of ωi is unknown. Throughout the years, investigations

into cosmic strings have shown loops produced at sizes

comparable to the string thickness [50, 51], sizes around

the gravitational backreaction scale, ωi = 2”Gµi [52–55],

and at scales much closer to the characteristic length of

the string network [56–60]. The most recent large-scale

numerical simulation into the production of cosmic string

loops finds a double-peaked spectrum of loop production,

where around 90% of network energy goes into loops at

the gravitational backreaction scale and the remaining

10% into large loops with ωi → 0.1 [61]. Note in that

paper the size of loops is expressed as a fraction of the

Small Loop - Gμ~10-9
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FIG. 6: Likelihood posteriors for the small loop fit to the NG15 data. The solid (dashed) lines correspond to cuspy

(kinky) loops.
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FIG. 7: The best-fit spectra in the small (left) and large (right) loop cases. The solid (dashed) lines correspond to

cuspy (kinky) loops. The NANOGrav 15-year data is shown as violins.

cosmic strings (as opposed to cosmic superstrings) are

known to have a spectrum that is too flat to explain the

NANOGrav SGWB measurements.

It is much more informative to compare the cosmic su-

perstring results with current up-to-date models of super-

massive black hole binary mergers, as they are the leading

astrophysical candidate for the source of the SGWB. The

three black hole binary models investigated in Raidal

et al. [11] – circular binaries evolving purely gravitation-

ally, eccentric binaries evolving gravitationally and circu-

lar environmentally driven binaries – have BICcirc

SMBH
= 60,

BICecc

SMBH
= 50, BICenv

SMBH
= 57. We see that the large

loop fits are comparable in likelihood to the environmen-

tal model and slightly worse than the eccentric model,

while the small loop fits are comparable to the circular

binary model. This shows that cosmic superstring mod-

els are competitive with the best current astrophysical

models.

C. Comparison to NANOGrav fit

When analysing their data, the NANOGrav collabora-

tion used a simplified cosmic superstring model, where

only one type of string dominates [12]. In this case, the

treatment amounts to a model of cosmic strings with a re-

duced intercommuting probability P , assumed to rescale

the spectrum as follows:

!SUPER(f) =
1

P
!CS(f), (23)

where !CS is the spectrum obtained from cosmic strings

at a given tension and P is treated as a constant free

parameter7. There are two main downsides to this ap-

7 The scaling !SUPER(f) → P→1 can be understood in terms of

the VOS model as taking the loop chopping e”ciency c̃ → P 1/2

leading to a scaling L → P 1/2 in the correlation length [33, 34]

and a corresponding boost in the string density ω = µ/L2 → P→1.

[See earlier work by: Afzal eta al (NANOGrav) (2024),  Figueroa et al (2024), Ellis et al (2023)]

Small loop Large loop
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FIG. 9: The best-fit spectra in the small (left) and large (right) loop cases. The solid (dashed) lines correspond to

cuspy (kinky) loops. The NANOGrav 15-year data is shown as violins, and the sensitivity curves of current and

(projected) future experiments, taken from [14], are shown by shaded regions.

Fitting the cosmic superstring model to the

NANOGrav 15-year gravitational wave background data

gives well-constrained values for the fundamental string

tension at both small and large loop sizes. As string

loops oscillate, the dominant fraction of gravitational

waves can come from either cusps (single points mov-

ing instantaneously at highly relativistic speeds) or kinks

(discontinuities in the loop tangent vector). Within the

NANOGrav frequency range, this origin does not have a

significant e!ect on the best-fit spectra or parameters, as

we obtain expectation values for the fundamental string

tension of log
10
(Gµ1) = →11.4+0.3

→0.2(→11.5+0.3
→0.2) for gravita-

tional waves originating from large cuspy (kinky) cosmic

superstring loops and log
10
(Gµ1) = →9.7+0.7

→0.7(→9.9+1.0
→0.5)

for small cuspy (kinky) loops. The posteriors for string

coupling, gs, and w, which describes the size of extra

compact dimensions, are much flatter and we set 2ω con-

fidence bounds as gs < 0.69(< 0.70), w < 0.90(< 0.91)

for the large cuspy (kinky) loops and gs < 0.63(< 0.61),

w < 0.88(< 0.83) for small cuspy (kinky) loops.

Finally, we repeat the analysis by assuming the string

loops consist of 10% large loops and 90% small loops,

where only large loops contribute to the GW signal. In

this case, we obtain bounds for the string tension of

log10(Gµ1)NG = →11.0+0.4
→0.2(→11.1+0.4

→0.3) which are di!er-

ent from the bounds obtained by Afzal et al. [12] and

Figueroa et al. [13], who make the same assumptions on

the string loop distribution. These di!erences can be

attributed to our modelling of the cosmic superstring net-

work in terms of multiple correlation lengths, as opposed

to the single-string approximation used in [12, 13]. As

discussed in section IVC, calculating the superstring GW

spectrum by rescaling an ordinary cosmic string spectrum

can lead to loop lengths larger than the string correlation

length. We also place 2ω bounds on gs < 0.59(< 0.61)

and w < 0.84(< 0.84), which is not possible with the

single-string approximation used in [12, 13]. In all cases,

the quality of fits is comparable to the current best astro-

physical models involving supermassive black hole bina-

ries, although large loops are favoured over small loops.

Extending the SGWB fitted to the NANOGrav data

over the full range of GW emission frequencies shows that,

at higher frequencies, both the large and small-loop fits

can be easily probed by projected future gravitational

wave experiments, such as LISA and the Einstein Tele-

scope. These measurements can also be used to di!er-

entiate between cusp and kink-dominated emission, as

the small-scale structure of loops a!ects the damping

of higher harmonics (higher frequencies). Unfortunately,

the low-frequency tail of the SGWB, which contains the

clearest signatures of heavy cosmic superstring species, is

out of reach of current experimental methods.

There remain significant uncertainties in modelling the

GW signal from cosmic (super)string networks. The most

important unknown is the size of string loops, which de-

termines both the magnitude and shape of the spectrum

as seen, for example, in Figs. 2 and 3. This is a challeng-

ing and important open problem in the field. The best

we can do at present is model various options, through

di!erent choices of loop distributions, or the parameter

ε as we have done in this paper. For cosmic superstrings,

in particular, there are additional uncertainties arising

Juhan Raidal
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As discussed in section II, the volume parameter w is

the ratio between the minimum volume and e!ective vol-

ume occupied by the fundamental string in the compact

extra dimensions. A small value of w corresponds to a

larger volume of the compact dimensions being available

to the strings, while w = 1 corresponds to compacti-

fication at the string scale (or to highly warped extra

dimensions) so that volume e!ects from the extra dimen-

sions become negligible. Note that the e!ective volume

is only a lower bound to the total volume of the extra

compact dimensions. As more of the extra dimensions

become traversable to the strings, the larger the prob-

ability of the strings “missing” each other in the extra

dimensions when intersecting. This leads to a decrease in

intercommuting probability, corresponding to an increase

in the number of string loops and a boost to the GW

signal. Since the heavier strings oscillate less in the extra

dimensions, the e!ective volume they explore is much

smaller than for the fundamental strings and the boost

in GW magnitude is much smaller.

Comparison spectra for w = 0.1 and w = 1 can be

seen in Fig. 4. As varying w has a strong impact on the

resulting spectra and the value of w is physically inter-

esting, encoding information on the size/warping of the

extra dimensions, we will treat this as a free parameter.

Increasing B leads to additional kinetic energy in string

loops and, hence, a higher velocity. This, in turn, corre-

sponds to a larger correlation length and a smaller GW

signal. The e!ect is strongest for heavier string species

at large string coupling gs, but in general, it is minor

enough to be ignored. For ease of computation, we fix

B at a constant value, choosing B = 1 as then there is

explicit energy conservation within our system.

IV. RESULTS AND DISCUSSION

Out of the set of parameters determining the cosmic

superstring GW spectra, {”, B,ωi, q, µ1, gs, w}, we have

fixed the values of ” and B, chosen binary scales for ωi

and q and will treat w, µ1 and gs as free parameters. We

fit our model to the most recent PTA stochastic gravi-

tational wave background dataset – the NANOGrav 15-

year dataset [2]. To accurately model the high-frequency

behaviour of the cosmic superstring SGWB spectrum,

jmax = 1012 harmonic modes are summed to produce

each spectrum. To quantify the quality of our fit, we

Model →2 lnLmax log10(Gµ1) gs w

Cuspy big loops 47.9 →11.4+0.3
→0.2 < 0.69 < 0.90

-11.8 0.22 0.01

Kinky big loops 47.8 →11.5+0.3
→0.2 < 0.70 < 0.91

-11.9 0.26 0.01

Cuspy small loops 53.6 →9.7+0.7
→0.7 < 0.63 < 0.88

-10.8 0.04 0.01

Kinky small loops 53.5 →9.9+1.0
→0.5 < 0.61 < 0.83

-10.9 0.05 0.01

TABLE I: The log-likelihoods and posterior mean values

(with 68% confidence intervals) for the models fitted to

NG15. Upper 2ε limits are given for w and gs. The

best-fit values for the multidimensional fits are given in

small print below the posterior values.

compute likelihoods following Ellis et al. [14] as

L =
14∏

m=1

Pm(#GW(fm)), (21)

where for each frequency bin m, Pm(#) are the posterior

probability density functions of the NG15 Hellings-Downs-

correlated spectrum analysis and #GW(fm) is the cosmic

superstring background spectrum energy density in that

frequency bin.

In total, we produce four 3-dimensional likelihood con-

tours – large and small, cuspy and kinky loops. Note

that here we assume all loops are formed at a given con-

stant ωi. This is di!erent from the assumptions made by

NANOGrav when producing their cosmic superstring fit

[12]. These di!erences and their e!ects will be discussed

in Sec. IVC.

The marginalized posterior fits in all three free param-

eters, along with their 68% confidence regions, can be

seen in Fig. 5 for large loops and in Fig. 6 for small

loops. The parameter ranges, along with the parameters

corresponding to the best-fit points, can be seen in Table

I. The spectra corresponding to the best-fit points (along

with the NG15 PDFs) can be seen in Fig. 7.

A. Likelihood Posteriors

As can be seen in Fig. 7 and Table I, both large and

small loops fit well with the NG15 data with large loops

being favoured by the data. There is no major di!er-

ence between the results obtained from cusp and kink-

Bounds on Fundamental string tension, string coupling 
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Conclusions 

Single field Inflation has become the standard paradigm for primordial density fluctuations. 


Tight constraints are emerging on the slow roll parameters — possible two scales emerging 


Reheating the Universe is an area that has received relatively little attention. 


Possible role of non-topological solitons like oscillons in models with asymptotically flat potentials - a new observational route


Where is the inflaton in string theory? Have looked at a particular example and seen the possible importance of the kinating period 
between the end of inflation and the onset of reheating - some 30 orders of magnitude in time, when lots could happen !


Have seen cosmic superstring loops could form which percolate, reach new scaling solutions during and after kination with 75% of 
the energy density stored in them .


Might lead to novel GW signatures from their evolution and subsequent decay during radiation and matter dom.


Have seen how cosmic superstrings can leave distinctive signatures at the nano Hertz scale - exciting possibility


Great fun thinking about these periods and asking whether they can really be probed in the data.


Thank you for listening 


