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Why Go Beyond the Standard Model?

I Standard Model (SM) is successful but incomplete:

No explanation for neutrino masses

No dark matter candidate

Hierarchy and naturalness problems

Absence of gauge coupling unification

I Supersymmetry (SUSY) addresses many of these, but MSSM faces issues like the µ-problem and lack of
rich collider signatures

I Local supersymmetry (SUSY) → Supergravity (SUGRA)

I SUGRA partially unifies gravity with SM interactions

I However, SUGRA is non-renormalizable → Treated as an effective low-energy theory
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String Theory and Gauge Unification

I A UV-complete theory is needed beyond SUGRA

I Best candidate: 10D heterotic superstring theory based on E8 × E ′8

I In strong coupling: described by 11D SUGRA (M-theory)

I Compatible with unification scale MX

I Compactification of extra dimensions breaks E8 → E6 (or its subgroups)

I E6 governs observable sector

I The second E ′8 becomes the hidden sector, where SUSY breaking occurs.

I Generates soft SUSY-breaking terms in visible sector, characterized by the gravitino mass:
m3/2 ∼ O(TeV)

I Links string theory to realistic low-energy SUSY models
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E6 Grand Unified Theory

I E6 is an exceptional complex Lie group that does not belong to the classical series: SU(N), SO(N), or
Sp(N).

I It has rank 6 and dimension 78.

I The fundamental representation is 27 (complex).

I The E6 gauge group can be broken down to the SM gauge group as follows:

E6 −→ SO(10)× U(1)ψ

−→ SU(5) × U(1)χ × U(1)ψ

−→ SU(3)C × SU(2)L × U(1)Y × U(1)χ × U(1)ψ.

I The low-energy gauge group is the SM extended by an additional U(1)N symmetry.

I This extra symmetry arises as:

U(1)N = cosϑU(1)χ + sinϑU(1)ψ
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Decomposition and Low-Energy Content of 27i

I The fundamental representation 27i of E6, where i = 1, 2, 3, decomposes under SU(5)× U(1)N as:

27i → (10, 1√
40

)i + (5̄, 2√
40

)i + (5̄, −3√
40

)i

+ (5, −2√
40

)i + (1, 5√
40

)i + (1, 0)i

Field Assignments:

I (10, 1√
40

)i , (5̄, 2√
40

)i : Standard Model matter

I (5̄, −3√
40

)i , (5, −2√
40

)i : Higgs doublets Hdi ,Hui and exotic quarks D̄i ,Di

I (1, 5√
40

)i : SM singlets Si

I (1, 0)i : Right-handed neutrinos
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SUSY Breaking and the Inert Sector

I At low energies, U(1)N is spontaneously broken by the VEV of the singlet S3,

〈S3〉 =
s
√

2
,

generating a Z ′ boson with mass ∼ 1 TeV.

I Anomaly cancellation is automatic with three complete 27-plets surviving down to low energies.

I Only the third generation Higgs doublets and singlet acquire VEVs:

〈H0
d3〉 =

vd√
2
, 〈H0

u3〉 =
vu√

2
, 〈S3〉 =

s
√

2

I The first two generations Hdα,Huα, Sα (α = 1, 2) remain inert, suppressing FCNCs due to their weak
Yukawa couplings.
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Discrete Symmetries in the E6SSM

In addition to gauge symmetries, the model includes four discrete Z2 symmetries that control flavor, proton
stability, and supersymmetric interactions:

Field ZH
2 ZL

2 ZB
2 ZM

2 ≡ R
Sα − + + +

Hdα,Huα − + + +
S3 + + + +

Hd3,Hu3 + + + +
Qi , u

c
i , d

c
i − − − −

Li , e
c
i − − − −

D̄i ,Di − + − +

• ZH
2 distinguishes the third generation from inert generations, suppressing flavor-changing interactions

(e.g., forbids λα33, λ3α3, λαβγ with α, β, γ = 1, 2).

• ZL
2 or ZB

2 ensures proton stability by forbidding baryon- and lepton-number violating terms.

• ZM
2 ≡ R-parity is automatically conserved due to U(1)N and stabilizes the Lightest Supersymmetric

Particle (LSP).
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Solving the µ-Problem

I In this case, the low-energy effective superpotential takes the form

W = YuQUcHu + YdQDcHd + YeLE
cHd + YνLν

cHu + λSHdHu,

where the last term λSHdHu represents the combination λijkSiHdj
Huk

.

I As a result, the effective µ-parameter is dynamically generated via

µ = λ333
s
√

2

leading to the term µHd3Hu3 in the superpotential.

I This mechanism naturally resolves the so-called µ-problem of the MSSM: (µHuHd ) is required to be
O(MZ ).

I Its origin is unexplained: fine-tuning problem
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Active Neutralino States in the E6SSM

I The neutralinos χ̃0
i (i = 1, . . . , 6) are mass eigenstates formed from:

Gauginos: B̃ (bino), W̃ 0 (wino), B̃′ (B’ino)

Higgsinos: H̃0
d , H̃0

u

Singlino: S̃

I In the basis (λB̃ , W̃
0, H̃0

d , H̃
0
u , S̃, λB′ ), the neutralino mass matrix is 6× 6:

m
χ̃0 =



M1 0 −MZ sW cβ MZ sW sβ 0 0

0 M2 MZ cW cβ MZ cW sβ 0 0

−MZ sW cβ MZ cW cβ 0 − 1√
2
vsλ − 1√

2
λvsβ m

λ
B′ H̃

0
d

MZ sW sβ MZ cW cβ − 1√
2
vsλ 0 − 1√

2
λvcβ m

λB′ H̃
0
u

0 0 − 1√
2
λvsβ − 1√

2
λvcβ 0 1

2

√
5
2
gN vs

0 0 m
H̃0
d
λB′

m
H̃0
uλB′

1
2

√
5
2
gN vs M′1



I The matrix is diagonalized via a unitary matrix N: N∗mχ̃0N
† = diag(m

χ̃0
i

)

I The lightest state (LSP) is:

χ̃
0
1 =

6∑
i=1

N1iψi

where ψi denotes the gauge/Higgs eigenstates.
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Inert Neutralino States

I The inert sector includes additional neutralinos from the first two generations of Higgsino doublets:

(h̃0,I
d1 , h̃

0,I
d2 , h̃

0,I
u1 , h̃

0,I
u2 )

I The 4× 4 mass matrix is:

m
χ̃0,I = −

vs√
2

 0 0 λ311 λ312

0 0 λ321 λ322

λ311 λ312 0 0
λ321 λ322 0 0


I Inert singlinos are neglected in this simplified model:

No Yukawa couplings
Remain massless and decoupled
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Active Higgs Sector in the E6SSM

I The scalar sector includes active doublets Hu , Hd and a singlet S.

I Mixing leads to 3× 3 mass matrices for both:

CP-even scalars (including the SM-like Higgs with m ' 125 GeV)
CP-odd pseudoscalars

I Extra Higgs states are typically heavier than the SM-like Higgs.
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Inert Scalar Sector

I Inert neutral scalars form mass eigenstates in the basis:(
h0I

1 , h
0I∗
2

)
,
(
h0I∗

1 , h0I
2

)
I Mass matrix:

m0I
h =

(
m2

11 m2
12

m2T
12 m2

22

)
I ZH

2 symmetry ensures CP conservation:

CP-even and CP-odd inert scalars are degenerate in mass
Physical states are complex scalars: hi

I Inert singlet scalars are decoupled with mass matrix:

m2
sI

=

[
−

1

16
g2
N

(
2v2

2 + 3v2
1 − 5v2

s

)
+ m2

s

]
I2×2

I Mass is controlled by g2
Nv

2
s (related to Z ′ scale) and m2

s :

Inert singlet scalars are always heavy if m2
s > 0
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Two-Component Dark Matter Scenario

I Setup: Two distinct DM candidates: one stabilized by R-parity (e.g., higgsino or wino LSP), and the
other by a Z2 symmetry (e.g., inert higgsino or scalar).

I Motivation: Both components are typically underabundant individually (e.g., higgsino/wino), making
them ideal for multi-component DM.

I Thermal History: Heavier DM freezes out first. If coannihilation between components is allowed, it can
drastically alter relic abundances.

I Constraints: Inert (pseudo)scalars interact via Z -boson and are excluded by Direct Detection bounds
unless subdominant.

I Tools Used:

SARAH 4.14.1 model implementation
SPheno 4.0.3 spectrum generation
MicrOmegas 5.0.8 relic abundance & DM observables
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Two Higgsinos as Dark Matter Candidates

I Sub-TeV MSSM higgsinos lead to underabundant relic density in the single-component case
(Profumo:2004).

I In a two-component scenario, both active and inert higgsinos can contribute.

I Main annihilation channel: neutralinochargino coannihilation via SM gauge bosons.

I The two components freeze out almost independently; relic density increases nearly linearly with mass.

I Scans confirm viable regions where:

m(H̃0) + m(H̃0,I ) ≈ 1.53± 0.03 TeV
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Relic Density and Higgsino Masses

I The data points that give a relic density of ΩCDMh2 = 0.120± 0.002.

I The color indicates the percentage of the active higgsino component of the total relic density.

I We pick three of the data points, indicated by the arrows, for studying direct and indirect detection in
more detail.
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Benchmarks: Active and Inert Higgsinos

I Three representative benchmark points (BPs) analyzed:

Benchmark Active mass (GeV) Inert mass (GeV) ΩAh2 ΩIh2

BP66 903 606 0.0804 0.0382
BP69 619 926 0.0461 0.0731
BP72 766 753 0.0637 0.0575

I Relic density of the individual higgsino components (red for active higgsino, blue for inert higgsino) for
points satisfy the relic density constraint.
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Annihilation Channels and Detection Prospects

I Dominant channels:

χ̃0χ̃0 → Z → f f̄
χ̃0χ̃± → W± → f f̄ ′

I Higgs-mediated annihilation negligible due to small singlino component and λ ∼ O(0.1).

I Spin-independent cross section:

Active higgsino: ∼1 order below Xenon1T bounds.

Inert higgsino: 12 orders smaller than active.

I Spin-dependent cross section also dominated by active higgsino.
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Summary

I We studied a two-component DM scenario in the string-inspired E6SSM.

I The DM candidates are:

Active higgsino-like neutralino: couples to SM fermions.

Inert higgsino-like neutralino: no direct coupling to SM fermions, but interacts via SU(2)L gauge
bosons.

I Stability ensured by R-parity and ZH
2 symmetry.

I The relic density constraint Ωh2 = 0.12± 0.002 implies:

mχactive
+ mχinert

≈ 1.5 TeV

I Three benchmark cases studied: active heavier, inert heavier, and degenerate mass.

I Direct Detection:

Active higgsino detectable in future (Xenon-nT, Darwin).

Inert higgsino has suppressed cross section, likely undetectable.
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