Revised phenomenology of new physics particles in GeV mass range

Maksym Ovchynnikov PASCOS 2025

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ▲国■ めん⊙

New physics in the GeV mass range:

- May be capable of solving BSM problems
- May be extensively probed in the lab
- Lab and cosmic probes are complementary

mass →

Do we understand their phenomenology well enough?

Model	(Effective) Lagrangian	What it looks like	
HNL N	$Yar{L} ilde{H}N+{ m h.c.}$	Heavy neutrino with	
		interaction suppressed by $U \sim \frac{Y v_h}{m_N} \ll 1$	
Higgs-like scalar S	$c_1 H^\dagger H S^2 + c_2 H^\dagger H S$	A light Higgs boson with	
		interaction suppressed by $ heta \sim rac{c_2 v_h}{m_h} \ll 1$	
Vector mediator V	$-rac{\epsilon}{2}B_{\mu u}V^{\mu u}+gV^{\mu}J_{\mu,B}$	A massive photon/vector meson with	
		interaction suppressed by $\epsilon,g\ll 1$	
ALP a	$c_G rac{lpha_s}{4\pi} a G^{\mu u} ilde{G}_{\mu u} + \dots$	A $\pi^0/\eta/\eta'$ -like particle with	
		interaction suppressed by $\frac{f_{\pi}}{f_a} \ll 1$	

Model	(Effective) Lagrangian	What it looks like	
$\mathrm{MCPs}\;\chi$	$\kappa e ar{\psi} \gamma^\mu \psi A_\mu$	Millicharged particle	
Quasi-olastic DM y	$a \cdot \bar{\mathbf{x}} \sim \mathbf{x} \mathbf{V}^{\mu}$	Stable particles	
Quasi-elastic Divi χ	$gd\chi\gamma\mu\chi\nu$	coupled via dark photons V	
Inclustic dark matter x' x	$a \sqrt{2} a \sqrt{V^{\mu}} + b c$	An unstable particle χ'	
melastic dark matter χ, χ	$g_d \chi^{-\gamma} \mu \chi V^{-\gamma} + \text{fi.c.}$	decaying into $\chi + SM$	
	_	A dark photon/ALP	
${ m Dark} \; { m QCD} \; ho_d/\pi_d$	$ar{q}_d \gamma^\mu q_d Z'_\mu + \dots$	with additional production	
	-	in showerings	

(日) (四) (注) (注) (注) (三) (○) (○)

GeV-mass particles: examples III

GeV-mass particles: one of the goals of intensity frontier experiments

Main challenge of phenomenology description – mixing with mesons

– Interaction Lagrangian of a new physics particle X:

$$\mathcal{L} = X^{a} \cdot \mathcal{O}_{a}[\psi_{\mathrm{SM}}] + X^{a}X^{b} \cdot \mathcal{O}_{ab}[\psi_{\mathrm{SM}}] + \dots$$
(1)

– Expansion of $\mathcal{O}_{a}[\psi_{\mathbf{SM}}]$ in terms of bound states \mathcal{Y} :

$$\mathcal{D}_{a} = \overbrace{c_{1}(\mathcal{Y}, \partial \mathcal{Y}, \partial^{2} \mathcal{Y})_{a}}^{1-\text{particle}} + \overbrace{c_{2}(\mathcal{Y}^{2}, (\partial \mathcal{Y})^{2}, \mathcal{Y} \partial \mathcal{Y})_{a}}^{2-\text{particle}} + \dots$$
(2)

– $X^a \mathcal{Y}_a$ – induced resonant mixing. Every process with \mathcal{Y} may involve X by replacing

$$\psi_{\mathcal{Y}} \to \theta_{\mathcal{Y}X}\psi_X, \quad \theta_{\mathcal{Y}X} = \frac{c_1}{m_X^2 - m_{\mathcal{Y}}^2 - im_{\mathcal{Y}}\Gamma_{\mathcal{Y}}} + \dots$$
(3)

Challenge: phenomenology description II

Main challenge – mixing with mesons

LLP	$\qquad \qquad \text{Mixing with } \mathcal{Y}$	
Dark photon/dark $ ho$	$ ho^0, \omega, \phi$ and their excitations	
V coupled to J^{μ}_B	ω, ϕ and their excitations	
Higgs-like scalar	f_0 and its excitations	
ALP/dark π	π^0, η, η' and their excitations	
HNL	No mixing	

- Most of the "simplest" models introduce mixing
- To understand their interaction, it is necessary to carefully know the meson spectroscopy in the mass range $M \lesssim 2~{\rm GeV}$

◆□▶ ◆□▶ ◆三▶ ★三▶ 三回日 のへの

Challenge: phenomenology description III

Meson spectroscopy

- Poorly measured masses and widths for some mesons
- Interpretation is ambiguous:
 - One meson or two mesons?
 - 2-quark or 4-quark bound states?
- This is important when embedding them into SU(3) representations

pdg, [2407.18348]

王曰 《曰》《曰》《曰》

Challenge: phenomenology description IV

Example 1 – dark photons:

- Decay rates: may be extracted from $e^+e^- \rightarrow \text{hadrons}$
- $\mathcal{O}(20\%)$ uncertainty in hadronic widths
- Resonant features in decay widths: result of the mixing with vector mesons

(日本)(四本)(日本)(日本)

Challenge: phenomenology description V

- Production modes: no opportunity to directly use real data. Mixing contributes to proton bremsstrahlung and fragmentation
- Quasi-real approximation: $\sigma_{pp \to V+X} \approx \int d\Phi P_{p \to p'V} \times \sigma_{pp \to X}$ (parametrized by the virtuality of p')
- Proton EM form-factor in the timelike region $F_p^{(1,2)}(q^2 > 0)$: where the mixing enters

Challenge: phenomenology description VI

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへで

Challenge: phenomenology description VII

Uncertainties heavily change the parameter space of dark photons – both in terms of mass and coupling!

LLPs

[2409.11096] 고는

Challenge: phenomenology description VIII

Example 2 – hadronically coupled ALPs:

$$\mathcal{L}_{a} = c_{G} \frac{\alpha_{s}}{4\pi} \frac{a}{f_{a}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a} + \frac{\partial_{\mu}a}{f_{a}} \sum_{q} c_{q} \bar{q} \gamma^{\mu} \gamma_{5} q + \text{flavor-changing}$$
(4)

1. Perform the chiral rotation

$$q \to e^{-i\gamma_5 c_G \kappa_q a/f_a} q, \quad q = u, d, s$$
 (5)

with $\operatorname{tr}[\kappa_q] = 1$ It converts the gluonic coupling into the second term of Eq. (6)

- 2. Make a correspondence between the resulting theory and ChPT Lagrangian $\mathcal{L}_{ChPT+a}[\kappa_q]$ [2012.12272]
- 3. Supplement the interactions with phenomenological Lagrangians describing interactions with other mesons $(\rho, K_0, f_2, \text{etc.})$

Maksym Ovchynnikov

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unlike dark photons, no data allows direct extraction of ALP decay rates

– Heavy pseudoscalar mesons P_h :

Resonance	$\eta(1295)$	$\pi^{0}(1300)$	$\eta(1405/1475)^{*}$	$\pi^{0}(1800)$
Mass [GeV]	1.294	1.3	1.408/1.476	$1.9 \cdot 10^{-4}$
Width [MeV]	55	200 - 600	50/96	215

- *: may be interpreted as a single $\eta(1440)$
 - Some of P_h s are very narrow and hence cannot be "averaged out"
 - Previous studies did not consider the ALP mixing with P_h [1811.03474], [2110.10691], [2310.03524]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Challenge: phenomenology description X

- To include the mixing, we used the Extended Linear Sigma Model (ELSM) [2407.18348], [1612.09218]
- Effect of P_h on decay rates: $\mathcal{O}(1)$ for c_G contributions^{*} and orders of magnitude for c_q contributions

- Issue: ambiguity in the description [1612.09218] has hardly quantifiable impact on the ALP rates
- $^*:$ effect of close cancellation of mixing and multi-field contributions

```
[2501.04525]
```

15/16

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ●

- GeV-mass new physics particles are one of the target goals of intensity frontier experiments
- Experimental opportunities to explore their parameter space meet theoretical challenges
- One of the most important challenges: mixing with mesons
- Depends on the progress of meson spectroscopy

Backup slides

Proton bremsstrahlung [2409.09123], [2409.11096]

- Quasi-real approximation: $\sigma_{pp \to V+X} \approx \int d\Phi P_{p \to p'V} \times \sigma_{pp \to X}$ (parametrized by the virtuality of p')
- Additional source of uncertainty: proton EM form-factor in the timeline region

ALP Lagrangian:

$$\mathcal{L}_{a} = c_{G} \frac{\alpha_{s}}{4\pi} \frac{a}{f_{a}} G^{a}_{\mu\nu} \tilde{G}^{\mu\nu,a} + \frac{\partial_{\mu}a}{f_{a}} \sum_{q} c_{q} \bar{q} \gamma^{\mu} \gamma_{5} q + \text{flavor-changing}$$
(6)

1. Perform the chiral rotation

$$q \rightarrow e^{-i\gamma_5 c_G \kappa_q a/f_a} q, \quad q = u, d, s$$
 (7)

with $\operatorname{tr}[\kappa_q] = 1$

It converts the gluonic coupling into the second term of Eq. (6)

- 2. Make a correspondence between the resulting theory and ChPT Lagrangian $\mathcal{L}_{ChPT+a}[\kappa_q]$ [2012.12272]
- Supplement the interactions with phenomenological Lagrangians describing interactions with other mesons $(\rho, K_0, f_2, \text{etc.})$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

– The ALP-ChPT Lagrangian implies **mixing** of ALPs with pseudoscalar mesons $P^0 = \pi^0, \eta, \eta'$:

$$P^{0} \to P^{0} + \theta_{P^{0}a}a, \quad \theta_{P^{0}a} = \frac{f(m_{P^{0}}, m_{a})}{m_{P^{0}}^{2} - m_{a}^{2} - im_{P^{0}}\Gamma_{P^{0}}} + g(\kappa_{q}) + \dots$$
 (8)

Phenomenologically, a light ALP is an admixture of $P^{0}s$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

More on hadronically coupled ALPs III

- Resulting Lagrangian must predict $\kappa_q\text{-independent}$ observables [2102.13112] and include all pseudoscalar excitations
- In practice: cancellation of κ_q contribution from the ALP-meson mixing (right) and many-field interactions (left)
- Widely adopted descriptions [1811.03474], [2201.05170], [2305.01715]: many-field κ_q -terms were missing in production and decay rates

(日) (四) (종) (종) (종)

- Extended linear sigma model (ELSM) [2407.18348], [1612.09218]
- ELSM adds a heavy pseudoscalar octet and identifies the "flavorless" excitations with $\pi^0(1300), \eta(1295), \eta(1440)$
- ALPs may be added to ELSM Lagrangian completely similarly to the ChPT case

◆□▶ ◆□▶ ◆三▶ ★三▶ 三回日 のへの

Incompleteness of ELSM and limited knowledge of properties of heavy excitations [2407.18348]:

- Ref. [1612.09218] dropped various operators with heavy pseudoscalars that may severely contribute to the c_G terms
 - Including them, however, requires full re-analysis of the ELSM fit to data
 - A study including these terms: in preparation
- $\pi^0(1300)$ has poorly measured width
- It is not clear whether the $\eta(1295/1440)$ are 2-quark bound states or also include 4-quark admixtures

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●