

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Fundação para a Ciência e a Tecnologia

Universidade do Minho Escola de Ciências

Using Machine Learning to find new dark matter phenomenology in a scotogenic model

PASCOS 2025 - July 2025 Based on 2505.08862 - FAS, Miguel Crispim Romão, Nuno Filipe Castro and Werner Porod

Fernando Abreu de Souza LIP - Minho

supported by

Beyond Standard Model Scans

- **θ**: Free parameters
- O: Observable

- θ : Free parameters
- O: Observable

<u>Proposed solution</u>: Increase efficiency by modifying sampling

Methodology

Parameter Spaces Scans Black Box Optimisation

- How far is the point from being valid
 Cost function C(O)
- To find valid points is to minimise C(O)

Optimisation problem!

FAS, MCR, NFC, MN and WP Phys. Rev. D 107, 035004 arXiV 2206.09223

$$C(\mathcal{O}) = max(0, -\mathcal{O} + \mathcal{O}_{LB}, \mathcal{O} - \mathcal{O}_{UB})$$

Point is valid when **C(O) = O**

Parameter Spaces Scans Black Box Optimisation

FAS, MCR, NFC, MN and WP Phys. Rev. D 107, 035004 arXiV 2206.09223

FAS, MCR, NFC, MN and WP Phys. Rev. D 107, 035004 arXiV 2206.09223

Black Box Optimization Scans First case study

- Physics cases: Supersymmetry constrained by Higgs mass and Dark Matter Relic Density
 - **cMSSM**: 4 free parameters
 - **pMSSM**: 19 free parameters

14

Scotogenic Model

Scotogenic Model Particle content

Scotogenic Model Particle content

 Fermions
 Scalars

 Ψ_1 Ψ_2 F_1 F_2 η S

 $SU(2)_L$ **2 1 1 2 1**
 $U(1)_Y$ -1
 1
 0
 0
 1
 0

- Neutrino masses at 1-loop level
- DM candidates
- LFV
- (g 2)µ

- 46 free **parameters**
- 31 (experimental / theoretical) constraints

Scotogenic Model Fermion sector

$$\mathcal{L}_{\text{fermion}} \supset -\frac{1}{2} M_{F_{ij}} F_i F_j - M_{\Psi} \Psi_1 \Psi_2$$

$$- y_{1i} \Psi_1 H F_i - y_{2i} \Psi_2 \tilde{H} F_i$$

$$- g_{\Psi}^k \Psi_2 L_k S - g_{F_j}^k \eta L_k F_j - g_R^k e_k^c \tilde{\eta} \Psi_1 + \text{h.c.}$$

Neutrino masses at 1-loop level

Scotogenic Model Neutrino masses

 ϕ_n^0

$$\mathcal{G} \;=\; \left(egin{matrix} g_{\Psi}^1 & g_{\Psi}^2 & g_{\Psi}^3 \ g_{F_1}^1 & g_{F_1}^2 & g_{F_1}^3 \ g_{F_2}^1 & g_{F_2}^2 & g_{F_2}^3 \end{pmatrix}$$

Scotogenic Model Neutrino masses

 $\mathcal{G} = \begin{pmatrix} g_{\Psi}^1 & g_{\Psi}^2 & g_{\Psi}^3 \\ g_{F_1}^1 & g_{F_1}^2 & g_{F_1}^3 \\ g_{F_2}^1 & g_{F_2}^2 & g_{F_2}^3 \end{pmatrix}$

 $= \mathcal{G}^T M_L \mathcal{G}$

 $\begin{cases} |g_{\Psi}^{1}| \sim |g_{\Psi}^{2}| \sim |g_{\Psi}^{3}| \\ |g_{F_{k}}^{1}| \sim |g_{F_{k}}^{2}| \sim |g_{F_{k}}^{3}| \end{cases}$ $|U_{\mathrm{PMNS}}^{ij}|$

 $\underbrace{\overline{\nu_j}}_{\nu_j} = \overline{\nu_j^c} \left(\mathcal{M}_{\nu} \right)_{ji} \nu_i$

Scotogenic Model Mass basis

• Scalar sector

$$\left(\phi_{1}^{0},\phi_{2}^{0},A^{0}\right)^{T} = U_{\phi}\left(S,\eta^{0},A^{0}\right)^{T}$$

• Fermion sector

$$\left(\chi_1^0, \chi_2^0, \chi_3^0, \chi_4^0\right)^T = U_{\chi} \left(F_1, F_2, \Psi_1^0, \Psi_2^0\right)^T$$

Scotogenic Model Mass basis

• Scalar sector

Scotogenic Model LFV and (g-2)µ

Scotogenic Model BR $(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13} \implies |g_F^2|, |g_\Psi^2|, |g_R^2|$ **LFV and (g-2)** μ small

Results

NSGA-III

Single-objective: CMA-ES

Multi-objective:

Optimisation Algorithms

local exploration

global exploration

Scotogenic Model Results - parameters

boxes show range of points found with MCMC in 2301.08485

Scotogenic Model Results - parameters

boxes show range of points found with MCMC in 2301.08485

Single-objective: **CMA-ES**

Multi-objective: NSGA-III

Optimisation Algorithms

local exploration

global exploration

Parameter Spaces Scan Results - Dark Matter

New phenomenology:

- Fermionic dark matter above neutrino floor
- Axial dark matter

Parameter Spaces Scan Novelty detection

- Exploration is enhanced with a **novelty detection** (ND) reward.
- ND can be applied to **parameter space** and/or **observable space**.
- ND in observable space can explore new phenomenology.

JCR, MCR arXiV 22402.07661 Phys. Rev. D 109, 095040

Conclusions

- The methodology allows for efficiently exploration of **parameter** and **phenomenological spaces** without the need of simplifying assumptions
- Algorithms show an **exploration-exploitation trade-off** which can be combined for a more powerful search strategy
- Use of **Multi-objective optimization** and the introduction of **hierarchy** in **single-objective optimization** show promising results
- Scotogenic new phenomenology:
 - Fermionic DM above neutrino floor
 - Axial DM

Backup

Parameter Spaces Scan Results - Dark Matter

Optimisation Algorithms							
Single-objective:	CMA-ES	\longrightarrow	local exploration				
Multi-objective:	NSGA-III	\longrightarrow	global exploration				

D	T / 1	D	NC .			
Parameter	Interval	Parametrisatic	on Mapping	Observable	Allowed Values	Parametrisation
λ_H	$[0.1, \ 0.3]$	Both	linear	m_h	[124.25, 126.25] GeV	Both
$\lambda_{4S},\lambda_{4\eta}$	$[10^{-8}, 1]$	Both	\log	a_{μ}^{BSM}	$[74, 428] \times 10^{-11}$	Both
$\lambda_{S\eta},\lambda_S,\lambda_\eta,\lambda_\eta',\lambda_\eta''$	$\pm [10^{-8}, \ 1]$	Both	symlog	$\Omega_{ m DM} h^2$	[0.11, 0.13]	Both
$\alpha ~({\rm GeV})$	$\pm [1, 10^4]$	Both	symlog	BR($\mu^- \rightarrow e^- \gamma$)	$< 4.2 \times 10^{-13}$	Both
M_{c}^{2}, M_{c}^{2} (GeV ²)	$5 \times [10^5, 0^6]$	Both	linear	BR($\tau^- \rightarrow e^- \gamma$)	$< 3.3 imes 10^{-8}$	Both
M_1 M_2 (GeV)	[100 2000]	Both	linear	BR($\tau^- \to \mu^- \gamma$)	$< 4.2 \times 10^{-8}$	Both
$M_{\rm T}$ (CoV)	[700, 2000]	Both	linoar	BR($\mu^- \rightarrow e^- e^+ e^-$)	$< 1.0 \times 10^{-12}$	Both
$M\Psi$ (GeV)	[100, 2000]	Doth	linear	BR($\tau^- \rightarrow e^- e^+ e^-$)	$< 2.7 \times 10^{-8}$	Both
$\Re(y_{ij}), (i, j = 1, 2)$	$\pm [10^{\circ}, 3]$	Both	symlog	BR($\tau \rightarrow \mu \ \mu^+ \mu^-$)	$< 2.1 \times 10^{-8}$	Both
$\Im(y_{ij}), (i, j = 1, 2)$	$\pm [10^{-6}, 3]$	Both	symlog	$BR(\tau \to e \ \mu^+\mu^-)$ $PR(\tau^- \to u^- e^+ e^-)$	$< 2.7 \times 10^{-8}$	Both
$\Re(g_R^k), \ (k=1,2,3)$	$\pm [10^{-8}, 3]$	Both	symlog	$BR(\tau \to \mu \ e^+ e^-)$ $BR(\tau \to \mu^- e^+ u^-)$	$< 1.8 \times 10^{-8}$	Both
$\Im(g_R^k), \ (k=1,2,3)$	$\pm [10^{-8}, 3]$	Both	symlog	$BR(\tau^- \to \mu^+ e^- e^-)$ $BR(\tau^- \to \mu^+ e^- e^-)$	$< 1.7 \times 10^{-8}$	Both
$\Re(g_{\Psi}^k),(k=1,2,3)$	$\pm [10^{-8}, 3]$	Non CI	symlog	$BR(\tau^- \to e^- \pi)$	$< 1.5 \times 10^{-8}$	Both
$\Im(g_{\Psi}^{k}), (k=1,2,3)$	$\pm [10^{-8}, \ 3]$	Non CI	symlog	$BR(\tau^- \to e^- n)$	$< 9.2 \times 10^{-8}$	Both
$\Re(g_{F_i}^k), (k = 1, 2, 3), (j = 1, 2)$	$\pm [10^{-8}, 3]$	Non CI	symlog	$BR(\tau^- \to e^- \eta')$	$< 1.6 \times 10^{-7}$	Both
$\Im(g_{F_i}^k), (k = 1, 2, 3), (j = 1, 2)$	$\pm [10^{-8}, \ 3]$	Non CI	symlog	BR($\tau^- \rightarrow \mu^- \pi$)	$< 1.1 \times 10^{-7}$	Both
	$[10^{-16}, 10^{-10}]$	CI	log	BR($\tau^- \rightarrow \mu^- \eta$)	$< 6.5 imes 10^{-8}$	Both
mue	$\left[\sqrt{m_{e}^{2}+6.82\times10^{-23}},\sqrt{m_{e}^{2}+8.04\times10^{-23}}\right]$	CI	linear	BR($\tau^- \rightarrow \mu^- \eta'$)	$< 1.3 \times 10^{-7}$	Both
<i>m</i>	$\left[\sqrt{m^2 + 2.435 \times 10^{-21}}, \sqrt{m^2 + 2.598 \times 10^{-21}}\right]$	CI	linear	$\operatorname{CR}_{\mu \to e}(\operatorname{Ti})$	$<4.3\times10^{-12}$	Both
oPMNS	$[\sqrt{m_{\nu_1}} + 2.105 \times 10^{-5}, \sqrt{m_{\nu_1}} + 2.005 \times 10^{-5}]$	CI	linear	$\operatorname{CR}_{\mu \to e}(\operatorname{Pb})$	$< 4.3 \times 10^{-11}$	Both
oPMNS	$[91.27, 95.00]_{\overline{180}}$	CI	linear	$\operatorname{CR}_{\mu ightarrow e}(\operatorname{Au})$	$< 7.0 \times 10^{-13}$	Both
oPMNS	$[8.20, 8.93] \frac{1}{180}$	CI	linear	BR($Z^0 \to e^{\pm} \mu^{\mp}$)	$< 7.5 imes 10^{-7}$	Both
θ_{23}^{1} with	$[40.1, 51.7]\frac{\pi}{180}$	CI	linear	BR($Z^0 \to e^{\pm} \tau^{\mp}$)	$< 5.0 imes 10^{-6}$	Both
$\delta_{ m CP}$	$[120, 369] \frac{\pi}{180}$	CI	linear	BR($Z^0 \to \mu^{\pm} \tau^{\mp}$)	$< 6.5 imes 10^{-6}$	Both
$\Re(\theta_k^{\rm R}), (k=1,2,3)$	$[0, 2\pi]$	CI	linear	$\sigma_{\rm SI}^{\rm DM}$	LZ bounds	Both
$\Im(\theta_k^{\mathrm{R}}), (k=1,2,3)$	$\pm [10^{-8}, \ 3]$	\mathbf{CI}	symlog	Δm_{21}^2	$[6.82, 8.04] \times 10^{-5} \text{eV}^2$	Non CI
				Δm_{31}^2	$[2.435, 2.598] \times 10^{-3} \text{eV}$	² Non CI
				$\sin^2(\theta_{12})$	[0.269, 0.343]	Non CI
				$\sin^2(\theta_{13})$	[0.02032, 0.02410]	Non CI

 $\sin^2(\theta_{23})$

 $\begin{array}{c} \delta_{\mathrm{CP}} \\ \hline \\ |g_{F_j}^k|, (k = 1, 2, 3), (j = 1, 2) \\ \\ |g_{\Psi}^k|, (k = 1, 2, 3) \end{array}$

 $[0.415, \ 0.616]$

 $[120, 369] \times \frac{2\pi}{360}$

 $[0, 4\pi]$

 $[0, 4\pi]$

Non CI

Non CI

CI

CI

Algorithms Covariance matrix adaptation evolution strategy (CMA-ES)

- Non genetic evolutionary algorithm
- Normal multivariate distribution
 - Mean: evolution direction
 - Covariance matrix: adapted iteratively

 $\theta_i^{(g+1)} \sim m^{(g)} + \sigma^{(g)} \mathcal{N}(0, \mathcal{C}^{(g)}) \quad \text{for} \quad i = 1, \cdots, \lambda$

[https://en.wikipedia.org/wiki/CMA-ES]

Generation 1

Generation 6

[Amini, Soleimany, Karaman, Rus, 2019]

• Similar to a *gradient descent*

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma
abla F(\mathbf{x}_n)$$

Algorithms Non-dominated Sorting Genetic Algorithm - III (NSGA-III)

- Multi-objective genetic algorithm
- Uses reference lines to increase diversity of solutions

[https://en.wikipedia.org/wiki/Pareto_front]

Algorithms Non-dominated Sorting Genetic Algorithm - III (NSGA-III)

Hyperparameter	Value	Description	Algorithm
$\sigma^{(0)}$	1.0	Initial step size	CMA-ES
N	1000	Maximum number of generations	CMA-ES
N	2000	Maximum number of generations	NSGA-III
μ	400	Population size	NSGA-III
$P_{ m cx}$	0.9	Crossover probability	NSGA-III
$\eta_{ m cx}$	30	Crossover crowding factor	NSGA-III
$P_{ m mut}$	0.5	Mutation probability	NSGA-III
$\eta_{ m mut}$	40	Mutation crowding factor	NSGA-III
P_{ind}	$rac{4}{N_{ m dim}}$	Independent mutation probability	NSGA-III