Gravitational Wave with Domain Wall Domination

Sung Mook Lee CERN

2504.02462 with Sungwoo Hong (KAIST) and Qiuyue Liang (IPMU)

PASCOS 2025

Domain Wall

Domain Wall

Phase transition

Surface tension

Topological Defects

- What about Cosmology?
 - Not present in SM, but prevalent in many BSM (e.g. GUT, Axion cosmic string)

Dynamics of Domain Wall

DW Dynamics in Expanding Universe

The universe is expanding

$$ho_{
m DW}^{(
m single)} \propto rac{1}{a} \qquad
ho_{
m String}^{(
m single)} \propto rac{1}{a^2}$$

DW Dynamics in Expanding Universe

The universe is expanding

$$ho_{
m DW}^{(
m single)} \propto rac{1}{a} \qquad
ho_{
m String}^{(
m single)} \propto rac{1}{a^2}$$

- Defects form 'networks'
 - Interact each other, and asymptotically fall into 'scaling regime'

$$ho_{
m DW}^{
m (network)} \propto rac{1}{t} \qquad
ho_{
m String}^{
m (network)} \propto rac{1}{t^2} \quad \left[egin{array}{c} a^{-4} & ({
m RD}) \\ a^{-3} & ({
m MD}) \end{array}
ight]$$

Numerical Simulations

Scaling Solutions

Cosmological History with DWD

Cosmological History with DWD

PASCOS 2025

GW Spectrum

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)$$

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)$$

 $M_w \sim \sigma L^2 \qquad Q \sim M_w L^2$

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)$$

$$M_w \sim \sigma L^2 \qquad Q \sim M_w L^2$$

 $P_{\rm GW}^{\rm (scaling)} \sim G \ddot{Q}^2 \sim G \sigma^2 t^2$

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)$$

$$\begin{split} M_w \sim \sigma L^2 & Q \sim M_w L^2 \\ P_{\rm GW}^{\rm (scaling)} \sim G \ddot{Q}^2 \sim G \sigma^2 t^2 \\ p_{\rm GW}^{\rm (scaling)} \sim n_w P_{\rm GW}^{\rm (scaling)} \sim \frac{G \sigma^2}{t} \end{split}$$

[T. Hiramatsu, M. Kawasaki, K. Saikawa 1309.5001]

Confirmed by simulations

$$\rho_{\rm GW} = \epsilon_{\rm GW} G \mathcal{A}^2 \sigma^2$$

During DWD, GW emission is suppressed

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)$$
Power Spectral Density (PSD)

Spectral information is encoded in PSD

Power-law PSD
$$p(f_e) = -\frac{\nu+1}{f_{\min,e}^{\nu+1}} f_e^{\nu} \Theta(f_e - f_{\min}(t_e))$$

$$\int_{f_{\min,e}}^{\infty} df_e \ p(f_e) = 1$$
$$f_{\min,e} \sim \frac{H_e}{2\pi}$$

Power Spectral Density (PSD)

$$\Omega_{\rm gw} = \begin{cases} k^3 & (\mathrm{IR}) \\ k^{-1} & (\mathrm{UV}) \end{cases} \qquad \Omega_{\rm gw} = \begin{cases} k^3 & (\mathrm{IR}) \\ k^{-1} & (\mathrm{UV}) \end{cases} + \text{Plateau} \qquad \Omega_{\rm gw} = \begin{cases} k^3 & (\mathrm{IR}) \\ k^{-1.7} & (\mathrm{UV}) \end{cases} + \text{Plateau} \end{cases}$$

• For example, during RD $\nu = -2 \Rightarrow \Omega_{\rm gw} \propto f^{-1}$

1

GW Evolution

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \frac{a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t) \mathcal{P}\left(\frac{k}{a}\right)}{\text{evolution}}$$

$$h'' + 2\mathcal{H}h' - \nabla^{2}h = a^{2} \frac{32\pi G\rho}{3} \Pi^{\rm TT}$$

GW Evolution

$$\begin{split} \frac{d\rho_{\rm GW}}{dk} \bigg|_{0} &= \int_{t_{\rm PT}}^{t_{0}} dt \, a(t) \left| \mathcal{T} \left(a(t), k \right) \right|^{2} p_{\rm GW}(t) \mathcal{P} \left(\frac{k}{a} \right) \\ & \text{evolution} \\ & \text{Power Spectral Density (PSD)} \\ & h'' + 2\mathcal{H}h' - \nabla^{2}h = a^{2} \frac{32\pi G\rho}{3} \Pi^{\rm TT} \\ & \text{Subhorizon} \quad h(a(\eta), k) = \frac{1}{a(\eta)} \left[c_{1}e^{ik\eta} + c_{2}e^{-ik\eta} \right] \propto a^{-1} \\ & \text{Superhorizon} \quad h(a(\eta), k) = c_{1} + c_{2} \int \frac{1}{a^{2}(\eta)} \propto a^{0} \end{split}$$

GW Evolution

Evolution history is encoded in the Transfer function

$$h(a_0,k) \equiv \mathcal{T}(a_e.k)h(a_e,k)$$

• Normally (RD), $\Omega_{
m GW} \propto k^3$

[C. Caprini, R. Durrer, T. Konstandin, G. Servant, 0901.1661] [R-G. Cai, S. Pi, M. Sasaki, 1909.13728] [A. Hook, G. Marques-Tavares, D. Racco, 2010.03568]

• Normally (RD), $\Omega_{
m GW} \propto k^3$

[C. Caprini, R. Durrer, T. Konstandin, G. Servant, 0901.1661] [R-G. Cai, S. Pi, M. Sasaki, 1909.13728] [A. Hook, G. Marques-Tavares, D. Racco, 2010.03568]

- Generalized to arbitrary equation of state:
 - Decelerating universe

$$\Omega_{\rm GW} \propto k^{\frac{15w+1}{3w+1}} \propto \begin{cases} k^3 & (w=1/3) \\ k^1 & (w=0) \end{cases}$$

[A. Hook, G. Marques-Tavares, D. Racco, 2010.03568]

• Normally (RD), $\Omega_{
m GW} \propto k^3$

[C. Caprini, R. Durrer, T. Konstandin, G. Servant, 0901.1661] [R-G. Cai, S. Pi, M. Sasaki, 1909.13728] [A. Hook, G. Marques-Tavares, D. Racco, 2010.03568]

Generalized to arbitrary equation of state:

• Decelerating universe
$$\Omega_{\rm GW} \propto k^{rac{15w+1}{3w+1}} \propto \begin{cases} k^3 & (w=1/3) \\ k^1 & (w=0) \end{cases}$$

[A. Hook, G. Marques-Tavares, D. Racco, 2010.03568]

• Accelerating universe + RD $\qquad \Omega_{\rm GW} \propto k^{\frac{5+3w}{1+3w}}$

[S. Hong, SML, Q. Liang, 2504.02462]

• DWD universe:
$$w = -\frac{2}{3}$$
 $\Omega_{\rm GW} \propto k^{-3}$

Sung Mook Lee (CERN)

Final Spectrum

$$\frac{d\rho_{\rm GW}}{dk}\Big|_{0} = \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left|\mathcal{T}\left(a(t),k\right)\right|^{2} p_{\rm GW}(t)\mathcal{P}\left(\frac{k}{a}\right)$$

Final Spectrum

$$\begin{split} \frac{d\rho_{\rm GW}}{dk} \bigg|_{0} &= \int_{t_{\rm PT}}^{t_{0}} dt \ a(t) \left| \mathcal{T} \left(a(t), k \right) \right|^{2} p_{\rm GW}(t) \mathcal{P} \left(\frac{k}{a} \right) \\ & h^{2} \Omega_{\rm GW}(k) \simeq \begin{cases} \frac{2r^{\alpha}(\nu-1)}{5-2\alpha-\nu} \mathcal{A} \left[\left(\frac{k}{k_{\rm weq}} \right)^{-5-\nu} - \left(\frac{k}{k_{\rm weq}} \right)^{-10+2\alpha} \right] & (k_{\rm weq} < k < k_{r}) \\ \frac{2r^{5}(\nu-1)}{5-\nu} \mathcal{A} \left[\frac{\left(r^{\alpha+\frac{\nu}{2}}(5-\nu) - 2r^{\frac{5}{2}}\alpha}{r^{\frac{5}{2}}(5-2\alpha-\nu)} \left(\frac{k}{k_{r}} \right)^{-5-\nu} - \left(\frac{k}{k_{r}} \right)^{-10} \right] & (k_{r} < k < k_{D}) \\ \frac{2(\nu-1)}{5-\nu} \mathcal{A} \left[\frac{\left(r^{\alpha}(5-\nu) - 2r^{\frac{5}{2}-\frac{\nu}{2}}\alpha}{(5-2\alpha-\nu)} \left(\frac{k_{D}}{k_{\rm weq}} \right)^{-5-\nu} \left(\frac{k}{k_{D}} \right)^{1-\nu} - \left(\frac{k_{D}}{k_{\rm weq}} \right)^{-10} \left(\frac{k}{k_{D}} \right)^{-4} \right] & (k > k_{D}) \\ \mathcal{A} &= 8\pi h^{2} \eta_{\rm GW} a_{\rm eq}^{4} H_{\rm eq}^{2} / (3H_{0}^{2}) & [\text{S. Hong, SML, Q. Liang 2504.02462}] \end{cases}$$

Sung Mook Lee (CERN)

PASCOS 2025

GW Spectrum with DWD

Intuitive Picture

GW Spectrum with DWD

Conclusion

Long lived DWs lead to DW dominant phase.

It may leave distinctive SGWB spectrum.

More analytical/numerical understandings are still required.

PASCOS 2025

Thank you!

Back-Ups

Numerical Simulations : GW

Analytic Understanding : VOS Model

Velocity-dependent One Scale

[C. J. A. P. Martins, I. Yu. Rybak, A. Avgoustidis, E. P. S. Shellard 1602.01322] [D. Gruber, L. Sousa, P.P. Avelino 2403.09816]

$$\begin{aligned} \frac{dL}{dt} &= (1+3\bar{v}^2)HL + \tilde{c}\bar{v}, \\ \frac{d\bar{v}}{dt} &= (1-\bar{v}^2)\left(\frac{k_w}{L} - 3H\bar{v}\right) \end{aligned} \qquad \rho_{\rm DW} = \end{aligned}$$

$$\rho_{\rm DWD} = \frac{3M_P^2}{4\mathcal{A}\sigma} \qquad \rho_{\rm DW} = \mathcal{A}\frac{\sigma}{t}$$
$$\rho_{\rm rad} = 3M_P^2 H^2 = \frac{3M_P^2}{4t^2}$$

• ZKO bound :
$$\sigma^{1/3} \lesssim \mathcal{O}(\mathrm{MeV})$$

[Ya.B. Zeldovich, I.Yu. Kobzarev, L.B. Okun '74]

PASCOS 2025

RD

 $a \propto t^{1/2}$

d go

log

 σ

 ho_{DW}

 $ho_{
m rad}$

DWD

 $L \propto a$

frustrated

 $a \propto t^2$

log t

 $L \propto t$

scaling

log t

Unstable DW

Potential Bias [A. Vilenkin '81] [G. B. Gelmini, M. Gleiser and E. W. Kolb, '89] [S. E. Larsson, S. Sarkar and P. L. White '97]

- Pressure catalyzes the collapse
- May not work for DW dominance

• String Nucleation [T. W. B. Kibble, G. Lazarides, and Q. Shafi '82] [J. Preskill, A. Vilenkin '92]

- Spontaneous decay of DW
- Still works for DW dominance if $\,\Gamma_{\rm DW} > H\,$

Large Inhomogenities

[A. Hook, G. Marques-Tavares, D. Racco 2010.03568]

$$h'' + 2\mathcal{H}h' + k^2h = J_*\delta(\tau - \tau_*)$$

[A. Hook, G. Marques-Tavares, D. Racco 2010.03568]

$$h'' + 2\mathcal{H}h' + k^2h = J_*\delta(\tau - \tau_*)$$

• Subhorizon
$$h \simeq \frac{a(\tau_*)}{a(\tau)} \frac{J_*}{k} \sin k(\tau - \tau_*) \propto k^{-1}$$

• Superhorizon
$$h \simeq \frac{a(\tau_k)}{a(\tau)} \frac{J_*}{\mathcal{H}_*} \sin k\tau \propto \begin{cases} k^{-1} \quad (RD) \\ k^{-2} \quad (MD) \end{cases}$$

$$\frac{d\Omega_{\rm GW}}{d\ln k} \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\ln k} \propto \frac{k^5}{a^2} P_h(k,\tau)$$

$$\rho_{\rm GW}(\mathbf{x},\tau) \sim \frac{1}{32\pi G a^2} \langle h'(\mathbf{x},\tau) h'(\mathbf{x},\tau) \rangle$$
$$\langle h(k,\tau) h(k',\tau) \rangle = (2\pi)^3 \delta^3 (k-k') P_h(k,\tau)$$

PASCOS 2025

[A. Hook, G. Marques-Tavares, D. Racco 2010.03568]