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Large Scale Structure

Visualization of data from 2dF galaxy catalog.1

1. Colless, M. et al. Mon. Not. Roy. Astron. Soc. 328, 1039. arXiv: astro-ph/0106498 [astro-ph] (2001).
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Cosmic Microwave Background (CMB)
Radiation

CMB map reconstructed from Planck data.2

2. Ade, P. A. R. et al. Astron. Astrophys. 571, A1. arXiv: 1303.5062 [astro-ph.CO] (2014).
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Big Bang Nucleosynthesis (BBN)
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Production of light elements in BBN.3

3. Pospelov, M. & Pradler, J. Ann. Rev. Nucl. Part. Sci. 60, 539–568. arXiv: 1011.1054 [hep-ph] (2010).
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Conclusions from observational data

• The current Universe is homogeneous at scales larger than 100Mpc.

• The Universe was (nearly) isotropic during recombination. Relative
fluctuations of the CMB radiation are of the order of:

∆T

T
∼ 10−5.

• The energy density of the Universe during BBN was dominated by radiation
(particles moving with relativistic speeds).
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Cosmological inflation

Cosmological inflation allows for simultaneous solution for many problems in
cosmology:

• horizon problem,

• flatness problem,

• magnetic monopoles problem.

Moreover, it provides a very natural explanation of CMB inhomogeneities.
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α-attractor T-model

α-attractor models of inflation origin from supergravity.
T-model of inflation is characterized by the superpotential:

WH =
√
αµS

(
T − 1
T + 1

)n

,

and by the Kähler potential:

KH = −3α
2

log

(
(T − T̄ )2

4TT̄

)
+ SS̄ .
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Two-fields α-attractor T-model
The scalar sector can be expressed in terms of two real scalar fields ϕ and χ.
The scalar Lagrangian takes particularly simple form:

L = −1
2

(
∂µχ∂

µχ+ e2b(χ)∂µϕ∂
µϕ

)
− V (ϕ, χ), b(χ) := log(cosh(βχ)),

with the potential:

V (ϕ, χ) = M4
(
cosh(βϕ) cosh(βχ)− 1
cosh(βϕ) cosh(βχ) + 1

)n(
cosh(βχ)

)2/β2

, M4 := αµ2,

and

β :=

√
2
3α

.
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Field space metric
Field space in α-attractor T-model has non-trivial structure:

G =

(
1 0
0 e2b(χ)

)
,

with negative curvature:
R = −2β2.

The so called geometrical destabilization is possible with two scenarios:

• during inflation leading to perturbation of inflationary trajectory or
premature end of inflation,

• around the end of inflation leading to fast (p)reheating.
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One-field α-attractor T-model

In the literature one-field simplification is considered with the potential of the
form:

V (ϕ, 0) = M4 tanh2n
(
β|ϕ|
2

)
.

In order to find inflationary trajectory (at least the part along χ = 0 direction)
one need to solve set of coupled differential equations:

H2 =
1
3

[
1
2
ϕ̇2 + V (ϕ, 0)

]
, ϕ̈+ 3Hϕ̇+ Vϕ(ϕ, 0) = 0.
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Perturbations in α-attractors
Linear perturbations are described in terms of gauge invariant Mukhanov-Sasaki
variables:

Qϕ := δϕ+
ϕ̇

H
Ψ, Qχ := δχ+

χ̇

H
Ψ,

which obey the following equations of motion

Q̈φ + 3HQ̇φ +

(
k2

a2 +m2
φ

)
Qϕ = 0, for φ = ϕ, χ,

where the effective masses m2
φ of perturbations are:

m2
ϕ = Vϕϕ(ϕ, χ), m2

χ = Vχχ(ϕ, χ) +
1
2
ϕ̇2R for R = −2β2.
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Spectrum of gravitational waves
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Evolution of the spectrum of gravitational waves as a function of the number of e-folds N from the end of inflation for n = 1.5, α = 10−3

(left panel), n = 1.5, α = 10−4 (right panel).4

4. Krajewski, T. & Turzyński, K. JCAP 10, 005. arXiv: 2204.12909 [astro-ph.CO] (2022).
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Geometrical destabilization of inflation

• Geometrical destabilization may happen not only after inflation, during
preheating when it leads to efficient reheating, but also during inflation.

• Geometrical destabilization during inflation was seen as a threat to the
inflationary model, since it causes deviation from inflationary trajectory with
possibility of premature end of inflation.

• Our numerical simulations have shown that this is not the case. Produced
fluctations of a spectator field backreact on the trajectory of the inflaton and
prevents field fluctuations from growing indefinitely.
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A minimal realization
For our numerical simulations, we use a model of slow-roll inflation driven by
a scalar field ϕ with Starobinsky potential

V (ϕ) = Λ4
(

1 − e
−
√

2
3

ϕ
MPl

)2

.

The potential of the spectator field χ is quadratic one with mass m.
The model is supplemented with the dimension six operator

−(∂ϕ)2χ2/M2

leading to Lagrangian density:

L = −1
2
(∂ϕ)2

(
1 + 2

χ2

M2

)
− V (ϕ)− 1

2
(∂χ)2 − 1

2
m2χ2,

where M is a scale of new physics that lies well above the Hubble scale, M ≫ H .
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Perturbations in minimal model
The dimension six operator generates a curved field space whose Ricci scalar is
negative and reads

R = − 4
M2(1 + 2χ2/M2)2

.

Along the inflationary valley χ = 0, Qs coincides with the fluctuation of χ and
has effective mass:

m2
s(eff) = m2 − 4ϵH2 (MPl/M)2 .

As ϵH2 grows during inflation, at the critical point such that

ϵc =
1
4

(
m

Hc

)2 (
M

MPl

)2

,

the effective mass becomes negative, which triggers geometrical destabilization.
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Standard deviation of spectator field
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Evolution of the standard deviation of χ for
(

m
Hc

)2
= 102, and

(
M

MPl

)2
= 10−3 (left panel), 10−4 (right panel).5

5. Krajewski, T. & Turzyński, K. JCAP 10, 064. arXiv: 2205.13487 [astro-ph.CO] (2022).
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Kinematical backreaction6

Destabilization of the inflationary trajectory in the χ direction can significantly
affect the motion of the inflaton field ϕ.
The EOM of inflaton takes the form:

ϕ̈+ 3Hϕ̇+ 2b′ϕ̇χ̇+ e−2b ∂V

∂ϕ
= 0,

where e2b = 1 + 2 χ2

M2 and b′ = 2 χ
M2 e

−2b in minimal realization.
χ increasing during geometrical destabilization effectively reduce the slope of the
potential (through the e−2b factor).
This slows down the field ϕ so that the slow-roll parameter ϵ is reduced and the
instability condition is no longer satisfied.
6. Grocholski, O. et al. JCAP 1905, 008. arXiv: 1901.10468 [astro-ph.CO] (2019).
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Evolution of slow roll parameter
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Evolution of the slow roll parameter ϵ (left panel) and of the standard deviation of χ (right panel).5

5. Krajewski, T. & Turzyński, K. JCAP 10, 064. arXiv: 2205.13487 [astro-ph.CO] (2022).
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Evolution of spectator field in space
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Snapshots of the spatial distribution of the spectator field χ. The plots are order in increasing time from left to right.5
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Histograms of relative frequency of different values of the spectator field χ. The plots are ordered in increasing time from left to right.5

5. Krajewski, T. & Turzyński, K. JCAP 10, 064. arXiv: 2205.13487 [astro-ph.CO] (2022).
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Evolution of spectator field perturbations
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Time evolution of the distribution of the amplitude of χ in nodes of the lattice for
(

m
Hc

)2
= 102, and

(
M

MPl

)2
= 10−3 (left panel),

10−4 (right panel). Field values from the range displayed in the plots are binned and the shade of the bin corresponds to the proportion

of nodes at which the field value correspond to a given bin.5

5. Krajewski, T. & Turzyński, K. JCAP 10, 064. arXiv: 2205.13487 [astro-ph.CO] (2022).
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Summary

1. Geometrical destabilization may take place in multi-field inflationary models
with negative curvature of the field space.

2. Non-canonical kinetic terms can take their origin from UV completion or be
included in effective field theory approach.

3. Lattice simulations proofed that short wavelength fluctuations of the inflaton
field are produced by non-linear interactions from spectator ones.

4. Kinematical backreaction has been recently confirmed in numerical lattice
simulations.

5. Geometrical destabilization during inflation leads to so called ’side tracked’
inflation.

Thank you for your attention.
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Multi-field models of inflation
Geometrical destabilization may take place when action for scalar fields contain
non-canonical kinetic terms.
Let us concentrate on non-linear sigma models with action given by:

S =

∫
d4x

√−g

[
M−2

Pl R − 1
2
GIJ

(
ϕK

)
∂µϕ

I∂µϕJ − V
(
ϕK

)]
.

Non-canonical kinetic terms can be introduced directly into an inflationary model
(as in the case of supergravity) or can come from quantum corrections in
effective theory approach.

Leff
(
ϕI
)
= Lℓ

(
ϕI
)
+
∑
i

ci
Oi

(
ϕI , ∂ϕI , . . .

)
Λδi−4
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Inflationary trajectory

The inflationary trajectory is solution of following set of equations:

3H2M2
Pl =

1
2
σ̇2 + V ,

ḢM2
P = −1

2
σ̇2 ,

Dt ϕ̇
I + 3Hϕ̇I + G IJV,J = 0 .

where 1
2 σ̇

2 ≡ 1
2GIJ ϕ̇

I ϕ̇J is the kinetic energy of the fields, DtA
I ≡ ȦI + ΓIJK ϕ̇

JAK

is the covariant derivative in the field space and H := ȧ/a is the Hubble
parameter with a being the scale factor of the FRW metric.
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Linear perturbations
The behavior of linear fluctuations around inflationary trajectory is described by
the second-order action:

S(2) =

∫
dt d3x a3

(
GIJDtQ

IDtQ
J − 1

a2GIJ∂iQ
I∂ iQJ −MIJQ

IQJ

)
,

where Q I := δϕI + ϕ̇I

H
Ψ’s are so-called Mukhanov-Sasaki variables and MIJ is a

mass matrix:

M I
J = V ,I

;J −
1

a3M2
Pl

Dt

(
a3

H
ϕ̇I ϕ̇J

)
−RI

KLJ ϕ̇
K ϕ̇L.

Equations of motion read:

DtDtQ
I + 3HDtQ

I +
k2

a2Q
I +M I

JQ
J = 0.
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Effective mass
We can rewrite EOMs in the adiabatic-entropic basis (e Iσ, e

I
s ) where e Iσ := ϕ̇I/σ̇ is

tangent to inflationary trajectory and e Is is orthonormal to e Iσ.
The EOM for superhorizon modes of the entropic fluctuations simplifies to

Q̈s + 3HQ̇s +m2
s(eff)Qs = 0 ,

with the effective entropic mass

m2
s(eff)

H2 =
V;ss

H2 + 3η2
⊥ + ϵRM2

Pl ,

where η⊥ ≡ −V,s

Hσ̇
, R is the field-space Ricci scalar and ϵ is the slow-roll

parameter.
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Stochastic inflation approach
Classically, if χ is stabilized for a long period prior to destabilization, its vacuum
expectation value rolls down to tiny values.
However, as soon as it becomes light, quantum fluctuations source its large-scale
component and provide the main contribution to its mean displacement:6

〈
χ2

c

〉
≃

(
Hc

2π

)2 {1
2

√
3π∆Nℓ,cerf

[√
∆Nℓ,c/3

]
− 3ϵc∆Nℓ,c

[
e−∆Nℓ,c/3 − 1

]}
,

where ∆Nℓ,c is the number of e-folds elapsed in the light but stabilized phase

∆Nℓ,c ≡ Nc − Nℓ ≃
(
Hc

m

)2 1
ηc − 2ϵc

.

6. Grocholski, O. et al. JCAP 1905, 008. arXiv: 1901.10468 [astro-ph.CO] (2019).
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Spectator variance
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Spectator variance ⟨χ2
c⟩ at the beginning of geometrical destabilization.6

6. Grocholski, O. et al. JCAP 1905, 008. arXiv: 1901.10468 [astro-ph.CO] (2019).
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Energy components
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5. Krajewski, T. & Turzyński, K. JCAP 10, 064. arXiv: 2205.13487 [astro-ph.CO] (2022).
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