Revisiting Instantons in Higgs Phase

Takafumi Aoki

ICRR, the University of Tokyo

Ongoing work with M. Ibe and S. Shirai.

Instanton

Topological soliton in non-abelian (e.g. SU(2)) gauge theories on 4D Euclidean space.

- Classified by winding number $w = 0, \pm 1, \ldots$
- Local minima of the action with

$$S_{\rm Euclidean} = \frac{8\pi^2}{g^2} |w| \,.$$

Dilatation Zero Mode

The action is classically independent of the **size** ρ .

Dilatation is a **zero mode**, which do not cost the action.

Constrained Instanton

What If Gauge Symmetry is Higgsed? [Affleck (1980)]

 $\mathcal{L}_{\text{YMH}} = \frac{1}{2g^2} \operatorname{Tr} F_{\mu\nu} F_{\mu\nu} + |D_{\mu}\phi|^2 + \frac{\lambda}{4} (\phi^{\dagger}\phi - v^2)^2 . \quad (\text{SU}(2) \text{ gauge theory with } \text{SU}(2) \text{ doublet } \phi.)$

- Instanton action increases as the size increases, since $|A_{\mu}\phi|^2 \sim |A_{\mu}|^2 v^2$ at $x \gtrsim v^{-1}$ contributes to the action. Decending the slope leads to $\rho \to 0$.
- There is no strict minimum with non-trivial winding number..
- However, small instantons (ρ ≪ ν⁻¹) "do not see" symmetry breaking, effectively.
 i.e. dilatation direction is almost flat, when ρ ≪ ν⁻¹.

Constrained Instanton

- Instantons with $\rho \ll v^{-1}$ have non-negligible effects, since they form an **almost** flat "valley" of the action.
- To compute their effects, those configurations should be extracted.

Minimization with constraint (of size) helps us picking up $\rho \neq 0$ configurations.

Leading order solution at $x \ll v^{-1}$ in singular gauge:

[Affleck (1980), Espinosa (1989)]

$$A^{a}_{\mu} = \bar{\eta}^{a}_{\mu\nu} \frac{x_{\nu}}{x^{2}} \left[\frac{2\rho^{2}}{x^{2} + \rho^{2}} + O(\rho^{2}v^{2}) \right],$$

$$\phi = \begin{pmatrix} 0 \\ v \end{pmatrix} \left[\sqrt{\frac{x^{2}}{x^{2} + \rho^{2}}} + O(\rho^{3}v^{3}) \right].$$

$$S_{\text{YMH}} = \frac{8\pi^{2}}{g^{2}} + \frac{2\pi^{2}\rho^{2}v^{2} + O(\rho^{4}v^{4})}{g^{2}} .$$

Overlapping of instanton profile and $|\phi| \sim v$ at $x \geq v^{-1}$.

4/11

Constrained Instanton: Procedure

Minimization with Constraint in Classical Level: Lagrange Multiplyer Method

$$\begin{split} S_{\text{total}}[A,\phi] &= S_{\text{YMH}} + \sigma(S_{\text{constraint}} - f(\rho)) \,, \\ S_{\text{constraint}} &= \int d^4 x \, O_{\text{constraint}} \,. \end{split}$$

Procedure:

• Lagrange Multiplier Method: "For given ρ , minimize S_{total} w.r.t. A, ϕ , σ ."

Constraint term:

• An example:
$$O_{\text{constraint}} = \left(\frac{1}{2} \operatorname{Tr} F \tilde{F}\right)^2$$
, $\int dx^4 x O_{\text{constraint}} = \frac{384\pi^2}{7} \rho^{-4}$

Procedure of Constraint in Quantum Level

Constrained instaton procedure = "insertion of 1" to path integral.

• (Entire configuration space) = \sum_{ρ} (slice of configurations with the fixed size ρ)

Two size-dependent effects compete, in asymptotically free case.

<u>Classical</u>: Action increases as ρv increases.

<u>Quantum effect</u>: Effective coupling constant depends on the instanton size ρ .

6/11

Constrained Instanton: Explicit Construction

Profile Functions \mathcal{A} and \mathcal{H} :

$$A^{a}_{\mu} = \bar{\eta}^{a}_{\mu\nu} \frac{x_{\nu}}{x^{2}} \mathcal{A}(x^{2}), \qquad \phi = \begin{pmatrix} 0 \\ \nu \end{pmatrix} \mathcal{H}(x^{2})$$

Analytic expansion of $\mathcal R$ (and similarly of $\mathcal H)$ is obtained by

• Inner/Outer solutions at leading order:

$$\mathcal{A}(x) = \begin{cases} \frac{2\rho^2}{x^2 + \rho^2} & x \ll m^{-1} \\ (\text{const}) \times K_2(mx) & x \gg \rho \end{cases} \qquad m = gv/\sqrt{2} \,.$$

1

(Modified Bessel function:
$$(\rho m)^2 K_2(mx) \sim \begin{cases} \frac{2\rho^2}{x^2} & x \ll m^{-1} \\ (\rho m)^2 \sqrt{\frac{\pi}{2mx}} e^{-mx} & x \gg m^{-1} \end{cases}$$
)

- Solving order by order with respect to ρv .
- Matching inner/outer solutions at $\rho \ll x \ll m_A^{-1}$.

Our Work: Matching

Two expressions of \mathcal{A} at $x \ll m_A^{-1}$ and $x \gg \rho$ should match at $\rho \ll x \ll m_A^{-1}$.

E

• M. Nielsen and N. K. Nielsn (1999) indicated that **matching fails** at $(\rho m)^2$ -order.

Our Work: We explicitly verified that the **matching is possible**.

Matching procedure is the **double expansion** with respect to ρm and ρ/x .

Example: Leading order outer solution
Outer LO

$$\mathcal{A}(x) \sim (\rho m)^2 K_2(mx)$$

$$= (\rho m)^2 \left[\frac{2}{m^2 x^2} - \frac{1}{2} + O(m^2 x^2) \right] \quad (x \ll m^{-1})$$

$$= \frac{2\rho^2}{x^2} - \frac{1}{2}(\rho m)^2 + O(\rho^4 m^4)$$
Inner LO
Inner LO
NLO
8/11

Our Work: Matching

- Corrections to the outer solution at higher-order in ρm are dropped.
- The appropriate choice of *O*_{constraint} is severely restricted to avoid the mismatch.

- Corrections to the outer solution at higher-order in ρm are taken into account.
- Matching works well **independently** to the choice of *O*_{constraint}.

Numerical Check: Fitting the Configuration (Preliminary)

<u>Check</u>: Numerical configuration coincides with analytic NLO ($(\rho m_A)^2$ -order) correction.

- <u>Plot</u>: Correction to the instanton profile. $O(10^{-4})$ in profile function.
- The numerical result is consistent with the analytic discussion of the matching.

Summary

- **Constrained instantons** are instanton-like configurations and are minima of action on the constrained surface (of fixed size).
- Nielsen and Nielsen (1999) pointed out that *ρv* -expanded constrained solutions do not exist for almost every constraint due to **mismatch** between the solution in *x* ≪ *m*⁻¹ and decaying behavior at *x* ≫ *ρ*.
- We clarified that the matching works well almost independently to the choice of the constraint, if we take into account corrections to outer solutions coming from ρm > 0, with appropriate ordering using double expansion.
- Numerical check: consistent with the analytic discussion of the matching.

BACKUP

Semiclassical Approximation

 \hbar -expansion of (part of) $Z = \int \mathcal{D}A \exp(-S[A]/\hbar).$

•
$$S[A] = \frac{1}{g^2} \int d^4x \left(\frac{1}{2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu} + \ldots\right)$$

The procedure of \hbar -expansion:

- **0**. $S \simeq$ Classical minima.
- 1. $S \simeq \text{Classical} + [\text{Field oscillations around the minima}]^2$.

[Field oscillations]²: bare coupling \rightarrow renormalized coupling $g(\rho^{-1})$.

Constrained Instanton: Procedure

Procedure of Constraint in Quantum Level [Gervais, Neveu and Virasoro (1977)]

Constrained instaton procedure can be understood as "insertion of 1" to Z.

0

Explicit Matching

$$\begin{aligned} \mathcal{A}_{\text{inner}}^{(\text{LO})}(\rho^2/x^2) + & \mathcal{A}_{\text{inner}}^{(\text{NLO})}(\rho^2/x^2) \\ &= \frac{2\rho^2}{x^2} - \frac{2\rho^4}{x^4} + \left(\rho m\right)^2 \left[-\left(c_1 - \frac{1}{12}\right) \left(\frac{\rho^2}{x^2}\right)^{-1} - 6c_1 + 12c_1\frac{\rho^2}{x^2} \ln \frac{\rho^2}{x^2} + c_2\frac{\rho^2}{x^2} + O\left(\frac{\rho^4}{x^4}\right) \right]. \\ \mathcal{A}_{\text{outer}}^{(\text{LO})}(m^2x^2) + & \mathcal{A}_{\text{outer}}^{(\text{NLO})}(m^2x^2) \\ &= \frac{2\rho^2}{x^2} - \frac{2\rho^4}{x^4} + (\rho m)^2 \left[-\frac{1}{2} + \frac{\rho^2}{x^2} \ln \frac{\rho^2}{x^2} + (\text{const})\frac{\rho^2}{x^2} \right] + O(\rho^6). \end{aligned}$$

- Matching is possible by adjusting c_1, c_2 . Especially, $c_1 = 1/12$.
- In the previous work, (part of) $\mathcal{R}_{outer}^{(\rm NLO)}$ was missing, leading to the mismatch.