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Instanton

Topological soliton in non-abelian (e.g. SU(2)) gauge theories on 4D Euclidean space.
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e Classified by winding number w =0, +1, ...

Sie p
e Local minima of the action with =
87T2 0
SEuclidean = g_2|W| . ’ Ix|

Instanton profile function

Dil ion Zero M .
atation Zero Mode Sn_ep

The action is classically indepenednt of the size p.

Dilatation is a zero mode, which do not cost the action. . OQ
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Constrained Instanton

What If Gauge Symmetry is Higgsed?  [Affleck (1980)]

1 A .
Lywmu = ng TrF, Fyy + |D,1¢|2 + Z(qﬁ’ ¢ — vz)z . (SU(2) gauge theory with SU(2) doublet ¢.)

o Instanton action increases as the size increases, since |A,¢|* ~ |A,[** at
x 2 v~! contributes to the action. Decending the slope leads to p — 0.

e There is no strict minimum with non-trivial winding number..

e However, small instantons (p < v~!) “do not see” symmetry breaking, effectively.

i.e. dilatation direction is almost flat, when p < v
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Constrained Instanton

e Instantons with p < v~! have non-negligible effects, since they form an almost
flat “valley” of the action.
e To compute their effects, those configurations should be extracted.

Minimization with constraint (of size) helps us picking up p # 0 configurations.

Leading order solution at x < v™! in singular gauge:
[Affleck (1980), Espinosa (1989)]
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Overlapping of instanton profile and [¢| ~ vatx > v .
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Constrained Instanton: Procedure

Minimization with Constraint in Classical Level: Lagrange Multiplyer Method

Stotal[A, @] = Symu + 0 (Sconstraint — f(0)) 5
Sconstraint = f d*x Oconstraint -
Procedure:
e Lagrange Multiplier Method: “For given p, minimize Sy W.r.t. A, ¢, o

Constraint term:

~N\2 2
. 1 4 384n° -4
e An example- Oconstraint = (j Tr FF) > fdx Oconstraint = 77r P
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Constrained Instanton: Procedure

Procedure of Constraint in Quantum Level

Constrained instaton procedure = “insertion of 1” to path integral.
e (Entire configuration space) = >’ ,(slice of configurations with the fixed sizep)
Two size-dependent effects compete, in asymptotically free case.

Classical: Action increases as pv increases.
Quantum effect: Effective coupling constant depends on the instanton size p.
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Constrained Instanton: Explicit Construction

Profile Functions A and H:

a —a Xv 0
A =T 3 A, ¢= ) H(x)
Analytic expansion of A (and similarly of #) is obtained by

e Inner/Outer solutions at leading order:

20’ 1

x<<m-
Ax) =+ m=gv/ V2.
(const) X Kx(mx) x> p
% x<m!
( Modified Bessel function:  (om)*K,(mx) ~ { * )
(om)* \[5=e™™ x> m™!

e Solving order by order with respect to pv. (aner Outer solution

Solwtion

. . . -1 + 4
e Matching inner/outer solutions at p < x < mj," . o e 7
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Our Work: Matching

Two expressions of A at x < m), I'and x > p should match at p < x < mA‘ .

e M. Nielsen and N. K. Nielsn (1999) indicated that matching fails at (om)>-order.
Our Work: We explicitly verified that the matching is possible.
Matching procedure is the double expansion with respect to pm and p/x.
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Our Work: Matching

Previous Work Our Work
power o P/x

% * .
2 . °
(ALN; SOLOTION
Q . .
-2 e ° °
0 Power & pm
e Corrections to the outer solution at e Corrections to the outer solution at
higher-order in pm are dropped. higher-order in pm are taken into
e The appropriate choice of account.
Oconstraint IS severely restricted to o Matching works well independently

avoid the mismatch. to the choice of Oongiraint- 9/11



Numerical Check: Fitting the Configuration (Preliminary)

Check: Numerical configuration coincides with analytic NLO ((om4)>-order) correction.

Correction to the Profile Function: A -2
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e Constrained instantons are instanton-like configurations and are minima of
action on the constrained surface (of fixed size).

e Nielsen and Nielsen (1999) pointed out that pv -expanded constrained solutions
do not exist for almost every constraint due to mismatch between the solution in
x < m~! and decaying behavior at x > p.

e We clarified that the matching works well almost independently to the choice
of the constraint, if we take into account corrections to outer solutions coming
from pm > 0, with appropriate ordering using double expansion.

e Numerical check: consistent with the analytic discussion of the matching.
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BACKUP
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Use of Instanton

Semiclassical Approximation

h-expansion of (partof) Z = [ DAexp(-S[A]/h).
o S[Al= % [d*x(5Tr FuF* +...)
The procedure of zi-expansion:

0. S ~Classical minima.

1. S ~Classical + [Field oscillations around the minima]?.

[Field oscillations]>: bare coupling — renormalized coupling g(o™").
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Constrained Instanton: Procedure

Procedure of Constraint in Quantum Level [Gervais, Neveu and Virasoro (1977)]

Constrained instaton procedure can be understood as “insertion of 1" to Z.

{ Sttt 1857 = S ¢ 6(Sconctratnt - )
Cosfical

Swtet ) = Yo LES]

Z = fDq) df 6(f - Sconstraint) eXP(—S YMH)

\§ = (Constradned u;.,.ruqm)

fD(D df o(f — S constraint) €XP(—=S yMH — 0(S constraint — f(0)))  (Zero is just added.)
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Explicit Matching

ﬂ(LO)(pz/xz)Jr ﬂ_(NLO)(pz/xz)

mner mner
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_ xLz - % ; (pm)Z[_(cl - 5)(&) —6c1+ 12615105 + o + o(%)] .
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+ O(p6) .
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e Matching is possible by adjusting c;, ¢». Especially, c; = 1/12.

« In the previous work, (part of) ALY was missing, leading to the mismatch.
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