Status of the LUX-ZEPLIN Experiment

Wenbo Ma LUX-ZEPLIN Collaboration University of Oxford

21st July PASCOS 2025 Durham UK

Origin of Dark Matter

• Dark matter: 85% of matter in the Universe • Diverse candidates, elusive searches • Could potentially scatter ordinary matter

LUX-ZEPLIN (LZ) Experiment

- Shielded by rock, water, and active veto system
- 7-tonne liquid xenon detector for dark matter search

SURF surface and the Black Hills

• Located 1.5 km (4850 ft) underground at Sanford Underground Research Facility (SURF), South Dakota, USA

LZ at Davis Campus

LZ Cryostat

Detector Structure

• TPC

- 494 3-inch PMTs, 253 top and 214 bottom
- 7 tonne of liquid xenon as the active region @ 174.1 Kelvin, 1.791 bar
- Skin detector between TPC and cryostat
 - 93 1-inch and 38 2-inch PMTs
- Outer Detector in the acrylic tank
 - 17 tonne of 0.1% Gd-doped LS
- Water Tank
 - 120 8-inch PMTs
 - 238 t of pure water

Time Projection Chamber

- Dual-phase liquid xenon time projection chamber
- Nuclear recoil vs electronic recoil discrimination
 - Primary scintillation light signals (S1)
 - Delayed (drifted, extracted, and amplified) ionisation charge signals (S2)
- 3D position reconstruction
 - S2 light pattern on top PMTs
 - S1-S2 timing difference
- 1.5 m diameter × 1.5 m height
 - 7 tonnes total active xenon
 - 5.5 tonnes fiducial xenon
- Woven mesh wire grids for bottom, cathode, gate, and anode electrodes
 - WS2024: 97 V/cm drift field, and 3.4 kV/cm extraction field (below liquid surface)

Data Taking Timeline

- Construction completed Fall 2021
- Detector conditions campaign Dec 2021 May 2022
- WS2024 data: Mar 2023 Mar 2024, 220 live days exposure
- Xenon circulation changed in July 2023: lower mixing, improved background rejection

• First science run (WS2022): Dec 2021 - May 2022, 60 live days exposure, PRL 131.041002

Background Budget

- Background suppression by radon tagging and low-mixing control
- Electron capture decays from Xe isotopes create keV peaks

• Pb-214 betas from dissolved Rn-222 daughters contributes to major background

Data Selection

- Trigger efficiency
- Single scattering selection
- Data analysis cuts (see backup)
- 645 < S2c [phd], log10(S2c [phd]) <4.5
- 3 < S1c [phd] < 80

• 5.5 +- 0.2 tonne fiducial volume • Veto detector anti-coincidence • Low-mixing background improvement

- Agree with background prediction
- No excess events
- No post-unsalting changes

WIMP Search Result

- 1220 events observed
- Two-sided profile likelihood ratio test statistic
- Power constrained at -1 σ [EPJC 81, 907 (2021)]
- Leading limit in 9 GeV 10 TeV range
- $\sigma_{SI} = 2.2 \times 10^{-48} \text{ cm}^2 @ 40 \text{ GeV/c}^2$
- PRL 135, 011802 (2025)

Recent Phenomenological Results

- Agree well on reconstructed energy (keVee) spectrum
- Ar-37 decayed away for WS2024
- Constrain on cosmic ray boosted dark matter, ALPs (see backup), and new physics phenomena

Reconstructed energy spectrum [keVee]

Recent Phenomenological Results

- EFT: systematically analyse O₁–O₁₅ WIMP–nucleon operators
- WIMP-pion coupling: can dominate when SI or SD channels are suppressed
- Ultra-heavy dark matter: creates multiple-scatter, track-like events in detectors

Neutrino Physics Prospects

Next Generation Detector: XLZD

- Pursuit dark matter and multi-messenger observables

• 60-80 tonne xenon TPC, an order of magnitude larger than current one • Joint effort of XENON, LZ, Darwin -> ~500 scientists, 72 institutions, 17 countries

Summary

- New world-leading WIMP search limits, improving previous constraints by over 4 times [PRL 135,011802 (2025)]
- LZ will run until 2028, aiming for 1000 live days to explore multiple physics goals: WIMP final run, 8B CEvNS, S2only, 0vbb, ...
- Ongoing planning and R&D for the next generation detector: XLZD

Wenbo Ma

LUX-ZEPLIN Collaboration

250 scientists, engineers, and technical staff from 38 institutions

b Institute for Basic Science

https://lz.lbl.gov/

- Black Hills State University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- King's College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Sydney
- University of Texas at Austin
- University of Wisconsin, Madison
- University of Zurich

US Europe Asia Oceania

Backups

Candidate Data Pie Chart

Limit Curve Varying Accidental Background Term

- Remove accidental rate constraint: best fit drops $2.6 \rightarrow 1.4$
- Remove constraint & outlier event: best fit drops $1.4 \rightarrow 0$
 - Outlier event holds model up, over subtracting in the WIMP region
- Adding fake events props limit back up
 - under-fluctuation of accidental events in the WIMP region

Detection Calibration

- Electronic recoils
 - Tritium radio-labelled methane & ¹⁴C betas
 - Mono-energetic ^{83m}Kr
- Nuclear recoils
 - DD neutron generator (2.45 MeV neutrons)
 - AmLi source for low energy neutrons(<1.5 MeV), deployed at 9 depths
- WS2024 NEST model
 - Light gain (g_1) : 0.112 ± 0.002 phd/photon
 - Charge gain (g_2) : 34.0 ± 0.9 phd/electron
 - Single electron signal size: 44.5 phd
 - 99.9% ER rejection below 40 GeV WIMP median

Background Table and Fit Result

- U-238 and Th232 chains
- Agree well with background only hypothesis
- Tested on keVee and renormalized S2 spectrums
- Fit result adding 40 GeV WIMP: 0.0 + 0.6

Source

²¹⁴Pb β s 85 Kr + 39 Solar ν E $^{212}\text{Pb} + ^{21}$ Tritium + 136 Xe $2\nu\beta$ ¹²⁴Xe DE 127 Xe + 12 Accidenta Atm. ν N $^{8}B + hep$ Detector

	Prefit expectation	Fit result
	743 ± 88	733 ± 34
Ar β s + det . γ s	162 ± 22	161 ± 21
R	102 ± 6	102 ± 6
¹⁸ Ρο βs	62.7 ± 7.5	63.7 ± 7.4
$- {}^{14}C\beta s$	58.3 ± 3.3	59.7 ± 3.3
3β	55.6 ± 8.3	55.9 ± 8.2
Ċ	19.4 ± 2.5	20.4 ± 2.4
²⁵ Xe EC	3.2 ± 0.6	2.7 ± 0.6
al coincidences	2.8 ± 0.6	2.6 ± 0.6
IR	0.12 ± 0.02	0.12 ± 0.02
ν NR	0.06 ± 0.01	0.06 ± 0.01
neutrons	$^{\mathrm{a}}0.0^{+0.2}$	$0.0^{+0.2}$
c^2 WIMP		$0.0^{+0.6}$
	1210 ± 91	1202 ± 41

Data Selection

Region of Interest: 3 < S1c [phd] < 80, 645 < S2c [phd], log10(S2c [phd]) < 4.5

Radon Tagging

• Circulation and cooling systems allow control of temperature and xenon flow

• High-mixing state: more turbulent flow -> uniform distribution of injected calibration sources • Low-mixing state: slower laminar flow

• 222Rn emanates from detector materials

• 222Rn-218Po pairs (half-life = 3.1 min) used to map the flow vectors

Solar ALPs and Bosonic Dark Matter

