

# **Observation of the** $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ **decay and measurement of its branching ratio at NA62**

Marco Mirra - INFN Napoli on behalf of the NA62 collaboration *PASCOS 2025, Durham – 21 July 2025* 





#### The $K \rightarrow \pi \nu \bar{\nu}$ decay

New physics at TeV scale not found (so far): explore higher mass scale via virtual production (ultrarare processes). Over-constraining unitary triangle via kaon decays is a crucial compatibility test of the SM  $K \rightarrow \pi \nu \overline{\nu}$  are extremely rare decays with rates very precisely predicted in SM:

- FCNC processes, no tree-level SM contribution
- $\sin^5\theta_C$  suppression (top loop dominance)
- Hadronic part from K<sub>e3</sub> via isospin rotation





| Decay Mode BR                                   | SM Buras et al. EPJC 82 (2022) 7, 615 | SM [D'Ambrosio et al. JHEP 09 (2022) 148] | Experimental Statu                     | s      |
|-------------------------------------------------|---------------------------------------|-------------------------------------------|----------------------------------------|--------|
| $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$ | $(8.60 \pm 0.42) \times 10^{-11}$     | $(7.86 \pm 0.61) \times 10^{-11}$         | $(10.6^{+4.1}_{-3.5}) \times 10^{-11}$ | (NA62) |
| $\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})$ | $(2.94 \pm 0.15) \times 10^{-11}$     | $(2.68 \pm 0.30) \times 10^{-11}$         | $< 2 \times 10^{-9}$                   | (KOTO) |

NA62 (2016–18 data): [JHEP 06 (2021) 093]

KOTO (2021 data): [Eur.Phys.J.C 84 (2024) 4, 377]

21/07/2025 M. Mirra

## Seeking new physics through kaon decays

Correlations between BSM contributions to BRs of  $K^+$  and  $K_L$  modes. Both channels are needed to disentangle NP scenarios involving a new Z' boson:



- Models with a CKM-like structure of flavour interactions (e.g. MFV)
- Models with new flavour and CP-violating interactions in which either left or right handed currents fully dominate
- Models like Randall-Sundrum
- Grossman-Nir Bound: model-independent relation

$$\frac{\mathcal{B}(K_L \to \pi^0 \nu \overline{\nu})}{\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})} \frac{\tau_{K^+}}{\tau_{K_L}} \lesssim 1$$
  
$$\Rightarrow \mathcal{B}(K_L \to \pi^0 \nu \overline{\nu}) \lesssim 4.3 \cdot \mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$$

21/07/2025 M. Mirra

## The NA62 experiment at CERN

A fixed target experiment at the CERN SPS dedicated to the study of rare decays in the kaon sector. Currently in NA62: ~200 physicists, ~ 30 institutions from 11 countries



Main goal: BR( $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ ) measurement using the decay-in-flight technique.

#### Broad physics programme thanks to unprecedented statistics for many decay modes

- ✓ Precision measurements
- $\checkmark\,$  Rare and forbidden decays, LFV and LNV
- ✓ Direct exotic searches, also in dump mode



21/07/2025 M. Mirra

## NA62 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis strategy

Signal: BR =  $(8.60 \pm 0.42) \times 10^{-11}$ 

K<sup>+</sup> track in,  $\pi$ + track out No other particles in final state



#### **Main backgrounds**

Upstream beam background $K^+ \rightarrow \mu^+ \nu(\gamma)$ BR = 63.5% $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ BR = 20.7% $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ BR = 5.58%



Background rejection relies on **Kinematics** used in conjunction with **Particle ID**, **Veto systems** and **sub-ns timing** 

- O(10<sup>3</sup>) or better suppression from kinematics for main K decay channels
- $O(10^8)$  muon and  $\pi^0$  suppression





➢ Kinematic reconstruction: M<sup>2</sup><sub>miss</sub>=(P<sub>K</sub> − P<sub>π</sub>)<sup>2</sup>, σ<sub>M<sup>2</sup><sub>miss</sub></sub>=10<sup>-3</sup>GeV<sup>2</sup>/c<sup>4</sup> at K<sup>+</sup> → π<sup>+</sup>π<sup>0</sup>
 ➢ Time resolution to match beam and daughter particle information: ~100ps

21/07/2025 M. Mirra





> PID detectors to suppress bkg with  $\mu^+$  or  $e^+$  in the final state for the main analysis:  $\mu$  vs  $\pi$  rejection of O(10<sup>8</sup>) for 15 < p( $\pi^+$ ) < 35 GeV



**Small angle veto (SAV)** Two shashlik calorimeters, IRC and SAC, to cover  $\theta < 1$  mrad



> Photon vetoes to suppress bkg with  $\pi^0$  in the final state for the main analysis: 10<sup>8</sup> rejection of  $\pi^0$  for  $E(\pi^0) > 40$  GeV



#### Performances

- $\checkmark$  Excellent time resolution  $\mathcal{O}(100 \text{ ps})$  to match beam and daughter particle information
- ✓ **Kinematics:** rejection of main *K* modes 10<sup>4</sup> via kinematics reconstruction
- ✓ PID capability:  $\mu$  vs  $\pi$  rejection of O(10<sup>8</sup>) for 15 < p( $\pi^+$ ) < 35 GeV
- ✓ **High-efficiency veto:**  $10^8$  rejection of  $\pi^0$  for E( $\pi^0$ ) > 40 GeV

The beam and detector of the NA62 experiment at CERN, 2017 JINST 12 P0502

21/07/2025 M. Mirra

#### Signal expectation

- → Normalisation channel  $K^+ \rightarrow \pi^+ \pi^0$
- > Analysis performed in  $\pi^+$  momentum bins  $p_i$

Expected SM  
signal events Selected  
$$\pi^{+}\pi^{0}$$
 Trigger  
downscaling  
$$N_{\pi\nu\nu}^{SM}(p_{i}) = N_{\pi^{+}\pi^{0}}(p_{i}) \frac{BR(\pi^{+}\nu\nu, SM)}{BR(\pi^{+}\pi^{0}, PDG)} \frac{\mathcal{A}(\pi^{+}\nu\nu)}{\mathcal{A}(\pi^{+}\pi^{0})} \frac{D}{D} \frac{\varepsilon_{trig}(p_{i})\varepsilon_{RV}}{\varepsilon_{RV}}$$

Acceptances at 0 intensity

Trigger efficiency ratio

#### **Random veto efficiency**

 $1 - \varepsilon_{RV}$  = probability of a signal event to be vetoed by accidental activity



21/07/2025 M. Mirra

#### **Signal expectation**

$$N_{\pi\nu\nu}^{SM}(p_i) = N_{\pi^+\pi^0}(p_i) \frac{BR(\pi^+\nu\nu, SM)}{BR(\pi^+\pi^0, PDG)} \frac{\mathcal{A}(\pi^+\nu\nu)}{\mathcal{A}(\pi^+\pi^0)} D \varepsilon_{trig}(p_i)\varepsilon_{RV}$$

| $N_{\pi\pi}$      | $(1.953 \pm 0.005) \times 10^8$ |
|-------------------|---------------------------------|
| $A_{\pi\pi}$      | 13.4%                           |
| $A_{\pi\nu\nu}$   | $(7.62 \pm 0.2)\%$              |
| ٤ <sub>trig</sub> | $(85.9 \pm 1.4)\%$              |
| ε <sub>RV</sub>   | $(63.2 \pm 0.6)\%$              |

 $N_{\pi\nu\nu}^{exp} = 9.91 \pm 0.34$ 

 $2016 - 2018: 10.01 \pm 0.42$ 

**Double expected signal by including 2021-22 data** 

**Improvements wrt 2018:** 

- New detectors installed during LS2 (additional kaon beam tracker station, new veto hodoscopes upstream FV, additional veto counters around beam pipe
- Beam intensity increased by ~35%
- Retuned selection and reconstruction
- New trigger configuration (common conditions lead to cancellation of systematics)
- ⇒ signal yield per SPS spill increased by 50%, ×2 better SES precision

Single Event Sensitivity  
SES = 
$$\frac{BR(\pi vv)}{N_{\pi vv}^{exp}}$$
 = (8.48 ± 0.29) × 10<sup>-12</sup>  
2016 - 2018; (8.39 ± 0.54) × 10<sup>-12</sup>

21/07/2025 M. Mirra

# **Backgrounds from** K<sup>+</sup> decays



0.02

0

0.04

0.06

 $m_{miss}^2$  [GeV<sup>2</sup>/c<sup>4</sup>]

0.08

Estimation data-driven for all main K channels using Control Regions

| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \pi^0(\gamma)$ | $\boldsymbol{0.83 \pm 0.05}$ |                      |
|-------------------------------------------------------------------------------------|------------------------------|----------------------|
| $K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \nu(\gamma)$               | $1.70 \pm 0.47$              | - data-driven        |
| ${ m K}^+  ightarrow \pi^+ \pi^+ \pi^-$                                             | $0.11\pm0.03$                |                      |
| $K^+ \rightarrow \pi^+ \pi^- e^+ v$                                                 | $0.89 \ ^{+0.33}_{-0.27}$    |                      |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$ | $\boldsymbol{0.01 \pm 0.01}$ | estimated<br>with MC |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^0 \ell^{\scriptscriptstyle +} { m v}$ | < 0.001                      | with MC              |

- Background suppression based on kinematics and photon vetoes
- Fraction of kinematic tails in SR region estimated on data on a sample selected tagging positively the  $\pi^0$ , via photons detected in the calorimeter
- $K^+ \rightarrow \pi^+ \pi^0$  events in signal region:

$$N_{\pi^{+}\pi^{0}}(SR) = N_{\pi^{+}\pi^{0}} f_{\pi^{+}\pi^{0}}(SR)$$

Events in  $\pi^+\pi^0$  regionRatio of events in  $\pi^+\pi^0$  region to<br/>after selectionSR, measured on control sample

21/07/2025 M. Mirra

-0.02

10

# **Backgrounds from** $K^+$ radiative decays

- $K^+ \rightarrow \pi^+ \pi^0 \gamma$ : not contained in the kinematic tails procedure (2γ in Calo, no additional γ).
- Photon vetos rejection with extra  $\gamma$  is 30x stronger
- Estimation using MC + measured single  $\gamma$  rejection:  $N(K^+ \rightarrow \pi^+ \pi^0 \gamma) = 0.07 \pm 0.01$

 $K^+$  → μ<sup>+</sup>νγ: not included in the kinematic tails estimation if the γ overlaps a highmomentum μ<sup>+</sup> at LKr leading to misID as a π<sup>+</sup>

- Veto based on  $(P_K P_\mu P_\gamma)^2$  and  $E_\gamma$  with  $\gamma = LKr$  cluster (mis)associated to muon (Necessary for 2021-22 data, since Calorimetric PID degraded at higher intensities)
- Estimation using control sample with signal in MUV3 :  $N(K^+ \rightarrow \mu^+ \nu \gamma) = 0.82 \pm 0.43$



• Veto added to selection for final analysis

 $m_{miss}^2 = (P_{\kappa} - P_{\pi})^2 [GeV^2/c^4]$ 

### Upstream background



- Suppression: Δt (K<sup>+</sup> and π<sup>+</sup>), upstream vetoes (VC, CHANTI, ANTIO), BDT using spatial infos of K+ and π+
- Estimation: Fully data-driven, "Upstream Reference Sample" contains all known generation mechanisms, bkg-to-signal probability estimated with data driven technique

 $N(\text{Upstream}) = 7.4^{+2.1}_{-1.8}$ 

• Validation: 10 independent samples enriched with different mechanisms.

21/07/2025 M. Mirra

## **Background validation**

| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \pi^0(\gamma)$                                                   | $\boldsymbol{0.83 \pm 0.05}$        |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| ${ m K}^{\scriptscriptstyle +}  ightarrow \mu^{\scriptscriptstyle +}  u(\gamma)$                                                      | $1.70 \pm 0.47$                     |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$           | $0.11 \pm 0.03$                     |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} { m e}^{\scriptscriptstyle +} { m v}$ | $0.89 \substack{+0.33 \\ -0.27}$    |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$                                                   | $\boldsymbol{0.01 \pm 0.01}$        |
| ${ m K}^{\scriptscriptstyle +}  ightarrow \pi^0 \ell^+ { m v}$                                                                        | < 0.001                             |
| Upstream                                                                                                                              | 7.4 <sup>+2.1</sup> <sub>-1.8</sub> |
| Total background                                                                                                                      | 11.0 <sup>+2.1</sup><br>-1.9        |
| SM signal                                                                                                                             | $9.91 \pm 0.34$                     |

#### Validation consistent across all samples



#### 21/07/2025 M. Mirra

#### Signal regions

- Expected SM signal:  $9.91 \pm 0.34$
- Estimated background: 11.0 +2.1 -1.9
- Observed: 31



21/07/2025 M. Mirra

Observation of the  $K^+ \rightarrow \pi^+ \nu \overline{\nu}$  decay at NA62 17

## Results for BR( $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ ) : 2021 - 2022



JHEP 02 (2025) 191

21/07/2025 M. Mirra

#### NA62 Combined Result 2016 - 2022

Integrating 2016-22 data:  $N_{bkg}=18 + 3 - 2$ ,  $N_{obs}=51$ Background-only hypothesis p-value =  $2 \times 10^{-7} \Rightarrow$  significance Z>5



 $BR_{2016-2022}(K^+ \to \pi^+ \nu \overline{\nu}) = (13.0 + 3.3)_{-3.0} \times 10^{-11} = (13.0 + 3.0)_{-2.7} + 1.3 |_{\text{syst}} \times 10^{-11}$ 

JHEP 02 (2025) 191

21/07/2025 M. Mirra

### NA62 result in a global perspective



- NA62 results are consistent
- Central value moved up (now 1.7 above SM)
- Fractional uncertainty decreased: 40% to 25%
- Bkg-only hypothesis rejected with significance Z>5

#### Conclusions

#### NA62 result on $K^+ \to \pi^+ \nu \overline{\nu}$ decay using 2021-22 dataset, combined with 2016-18 BR<sub>2016-2022</sub> = (13.0 $^{+3.3}_{-3.0}$ ) ×10<sup>-11</sup>, *JHEP 02 (2025) 191*

BR consistent with SM prediction within  $1.7\sigma$ 



#### **Additional materials**





21/07/2025 M. Mirra

### NA62 physics programme



21/07/2025 M. Mirra

#### **Upstream background estimation**

#### $N(Upstream) = \sum_{i} N_{URS}(i) f_{CDA} P_{match}(i)$

- i: bins of ( $\Delta T$ , N<sub>GTK</sub>)
- **Upstream Reference Sample: signal selection but** bad CDA
  - Contains all known upstream background • mechanisms
  - **Provides normalization**
- **f**<sub>CDA</sub>: ratio of bad CDA events to good CDA events
  - **Extracted from the URS**
  - **Depends on geometry only**
- P<sub>match</sub>: probability of passing K-π matching criteria
  Extracted from normalization data

 $N_{\text{URS}} = 51, f_{\text{CDA}} = 0.20 \pm 0.03, \langle P_{\text{match}} \rangle = 73\%$ 

N(Upstream) = 
$$7.4 + 2.1 - 1.8$$



#### 21/07/2025 M. Mirra

## $K^+ \rightarrow \mu^+ v \gamma$ background estimation and validation

> Estimation and validation of background using dedicated control samples

- Minimum Bias trigger + MUV3 positive muon ID
- Positively identify  $\mu\gamma \nu$  events using  $|(P_K P_\mu P_\gamma)^2| < 0.01 \text{ GeV}^2/c^4$
- Probability of calo mis-ID estimated using events passing calorimetric BDT pion selection (in a muon enriched sample with relaxed RICH selection)
- > Use calo mis-ID probability and appropriate trigger rescaling to estimate bkg
- Bkg checked in the sidebands of the calorimetric BDT pion probability (with standard RICH selection)



21/07/2025 M. Mirra

#### **Photon veto performance**

![](_page_25_Figure_1.jpeg)

21/07/2025 M. Mirra

#### **Particle ID performance**

![](_page_26_Figure_1.jpeg)

#### Bayesian $K - \pi$ matching

![](_page_27_Figure_1.jpeg)

- **Output:** posterior probability of GTK track = true  $K^+$ 
  - Use likelihoods of kaons (K) and pileup (P)
  - Likelihood ratio used to select true match when  $N_{GTK} > 1$
- Efficiency improved (+10%) and mistagging probability maintained.

#### Bayesian $K - \pi$ matching

![](_page_28_Figure_1.jpeg)

21/07/2025 M. Mirra

### **Kinematic regions**

![](_page_29_Figure_1.jpeg)

- Signal regions:
- Control regions:
  - Used to validate background predictions.
- Background regions:
  - Used as "reference samples" for some background estimates.

#### **Beam intensity**

#### **Optimum NA62 intensity**

![](_page_30_Figure_2.jpeg)

![](_page_30_Figure_3.jpeg)

- Saturation due to paralyzable dead time
  - TDAQ dead time
  - Trigger veto
  - Offline veto
- Operated at 75% intensity (450 MHz) since August 2023

21/07/2025 M. Mirra