Bayesian optimisation for efficient cosmological model selection

Ameek Malhotra

Work in progress with Nathan Cohen and Jan Hamann

PASCOS 2025, Durham

Bayesian Inference

The different levels of inference

1. Parameter constraints, given a model

Planck 2018 results

 $P(\theta|D,M)$

Bayesian Inference

The different levels of inference

2. Model selection — e.g. which inflationary model is favoured

Inflationary model

 $R + R^2 / (6M^2)$

Power-law potential Power-law potential Power-law potential Power-law potential Power-law potential Power-law potential Non-minimal coupling Natural inflation Hilltop quadratic model Hilltop quartic model D-brane inflation (p = 2)D-brane inflation (p = 4)Potential with exponentia Spontaneously broken S

$Z = P(D|M) = \int P(D|M, \theta) P(\theta|M) \, \mathrm{d}\theta$ Likelihood x Prior

Bayesian evidence (Z)ratio

Planck Collaboration: Constraints on Inflation				
	Potential $V(\phi)$	Parameter range	$\Delta \chi^2$	ln <i>B</i>
	$\Lambda^4 \left(1-e^{-\sqrt{2/3}\phi/M_{ m Pl}} ight)^2$			
	$\lambda M_{\rm Pl}^{10/3} \phi^{2/3}$		4.0	-4.6
	$\lambda M_{\rm Pl}^3 \phi$		6.8	-3.9
	$\lambda M_{ m Pl}^{8/3} \phi^{4/3}$		12.0	-6.4
	$\lambda M_{ m Pl}^2 \phi^2$		21.6	-11.5
	$\lambda M_{ m Pl} \phi^3$		44.7	-13.2
	$\lambda \phi^4$		75.3	-56.0
	$\lambda^4 \phi^4 + \xi \phi^2 R/2$	$-4 < \log_{10} \xi < 4$	0.4	-2.4
	$\Lambda^4 \left[1 + \cos{(\phi/f)}\right]$	$0.3 < \log_{10}(f/M_{\rm Pl}) < 2.5$	9.9	-6.6
	$\Lambda^4\left(1-\phi^2/\mu_2^2+\ldots ight)$	$0.3 < \log_{10}(\mu_2/M_{\rm Pl}) < 4.85$	1.3	-2.0
	$\Lambda^4 \left(1-\phi^4/\mu_4^4+\ldots ight)$	$-2 < \log_{10}(\mu_4/M_{\rm Pl}) < 2$	-0.3	-1.4
)	$\Lambda^4 \left(1 - \mu_{\rm D2}^2 / \phi^p + \ldots\right)$	$-6 < \log_{10}(\mu_{\rm D2}/M_{\rm Pl}) < 0.3$	-2.0	0.6
)	$\Lambda^4 \left(1-\mu_{\mathrm{D}4}^4/\phi^p+\ldots\right)$	$-6 < \log_{10}(\mu_{\rm D4}/M_{\rm Pl}) < 0.3$	-3.5	-0.4
al tails	$\Lambda^4 \left[1 - \exp\left(-q\phi/M_{\rm Pl}\right) + \ldots \right]$	$-3 < \log_{10} q < 3$	-0.4	-1.0
USY	$\Lambda^4 \left[1 + \alpha_h \log\left(\phi/M_{\rm Pl}\right) + \ldots\right]$	$-2.5 < \log_{10} \alpha_h < 1$	6.7	-6.8
	~			

 $\frac{Z_1}{Z_2} \propto \frac{P(M_1|D)}{P(M_2|D)}$

When to use it?

why they are widely used!

However, these methods are based on random sampling and typically require $N > 10^4$ likelihood evaluations for MCMC, even more for Nested Sampling

calculations, numerical simulations...)

Standard methods (MCMC, Nested Sampling) work well for the most part, which is

- This can be an issue if the likelihood is expensive to evaluate (high precision

The Algorithm

evaluate surrogate.

We want to replace the evaluation of the actual slow likelihood with a quick to

Step 1

Guess shape of unknown function from observed function values x_i, y_i using Gaussian Process Regression

Step 2

- Find next best point to evaluate (observation) using an acquisition function
 - Repeat until convergence

GP prediction

Acquisition function

Pros and Cons

Converges to true likelihood shape (or maximum) in far fewer evaluations (10-100x)

Works for arbitrary shaped likelihoods (multimodal, non-Gaussian...)

Greater computational overhead

nested sampling

- compared to traditional methods uses all available information to obtain new points

 - However, this doesn't come for free...

Unfavourable scaling with dimensions, may be limited to $D \leq 15 - 20$, unlike MCMC or

Some examples

Cosmology from CMB

Runtime < 15 min on laptop with ~ 200 likelihood evaluations — 6D Planck lite (no nuisance params)

Evidence estimate from GP

[NS]:Final LogZ info : mean: = -502.2473, upper: = -501.4937, lower: = -502.9939, dlogz sampler: = 0.0884

Estimate from Nested Sampler

log(Z) = -502.65 + / -0.32

MCMC ~ 10000 likelihood evals and Nested Sampler ~ 40000

Bayesian Optimisation Dynamical DE from CMB + BAO + SN

 $6 \text{ LCDM} + \Omega_K + W_0 W_a$

Planck lite + BAO + PantheonPlus with ~ 800 evaluations, runtime ~ 6 hours. With curvature, each likelihood eval takes ~2-3 seconds.

Evidence estimate from GP

Final LogZ info: mean = -1232.9086, upper=-1228.3018, lower=-1233.1163, dlogz sampler=0.1282,

Estimate from Nested Sampler log(Z) = -1232.6624 + / -0.41

Cosmology from CMB

6 LCDM + 9 nuisance parameters, Planck CamSpec likelihood with ~ 1000 evaluations, runtime ~ 12 hours

Evidence estimate from GP

Final LogZ info: mean = -5529.4664, upper = -5527.8009, lower = -5529.9712, dlogz sampler = 0.1680,

Estimate from Nested Sampler (runtime >1 day)

= -5529.6521 + / - 0.45loa

Comparison vs traditional methods

Faster for slow likelihoods but runtime increases more steeply...

MCMC runtime dominated by likelihood evaluation time, BO by the other steps

~1s likelihood evaluation time

Comparison vs traditional methods

We need about 10–100x fewer likelihood evaluations throughout!

Summary

Gaussian Process regression + active acquisition strategy can be used to perform Bayesian inference for cosmology

sampling

computationally expensive likelihoods

- High efficiency of the algorithm compared to traditional methods based on random
- Can obtain parameter posteriors + evidence for complicated distributions and

Stay tuned for paper and code (JAX based) + more applications to cosmology

Contact: <u>ameek.malhotra@swansea.ac.uk</u>

