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Bayesian Inference

The different levels of inference

1. Parameter constraints, given a model
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Bayesian Inference

The different levels of inference

2. Model selection — e.g. which inflationary
model is favoured
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Bayesian Optimisation

When to use it?

Standard methods (MCMC, Nested Sampling) work well for the most part, which is
why they are widely used!

However, these methods are based on random sampling and typically require
N > 10% likelihood evaluations for MCMC, even more for Nested Sampling

This can be an issue if the likelihood is expensive to evaluate (high precision
calculations, numerical simulations...)



Bayesian Optimisation
The Algorithm

We want to replace the evaluation of the actual slow likelihood with a quick to
evaluate surrogate.

Step 1

Guess shape of unknown function from observed function
values X;, y: using Gaussian Process Regression

Step 2

Find next best point to evaluate
(observation) using an acquisition function

Repeat until convergence
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Bayesian Optimisation
In action

GP variance — A logZ

Use A log Z for convergence check
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Bayesian Optimisation

Pros and Cons

Converges to true likelihood shape (or maximum) in far fewer evaluations (10-100x)
compared to traditional methods — uses all available information to obtain new points

Works for arbitrary shaped likelihoods (multimodal, non-Gaussian...)

However, this doesn’t come for free...

Greater computational overhead

Unfavourable scaling with dimensions, may be limited to D < 15 — 20, unlike MCMC or
nested sampling



Bayesian Optimisation

Some examples
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Cosmology from CMB

Runtime < 15 min on laptop with ~ 200
likelihood evaluations — 6D Planck lite (no
nuisance params)

Evidence estimate from GP
[NS]:Final LogZ info :

mean: = -502.2473,
upper: = -501.4937, lower: = -502.9939,
dlogz sampler: = 0.0884

Estimate from Nested Sampler
log(Z) = -502.65 +/-0.32

MCMC ~ 10000 likelihood evals and Nested Sampler ~ 40000
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Bayesian Optimisation

Dynamical DE from CMB + BAO + SN

6 LCDM + Q + wow,

Planck lite + BAO + PantheonPlus with ~ 800
evaluations, runtime ~ 6 hours. With curvature,
each likelihood eval takes ~2-3 seconds.

Evidence estimate from GP
Final LogZ info: mean = -1232.9086,

upper=-1228.3018, lower=-1233.1163,
dlogz sampler=0.1282,

Estimate from Nested Sampler
log(Z) = -1232.6624 +/-0.41

~1.0 ~0.8 —0.6 —0.4



Bayesian Optimisation

Cosmology from CMB

6 LCDM + 9 nuisance parameters, Planck
CamsSpec likelihood with ~ 1000 evaluations

runtime ~ 12 hours

A |

Evidence estimate from GP
Final LogZ info: mean = -5529.4664,

upper = -5527.8009, lower = -5529.9712,
dlogz sampler = 0.1680,

Estimate from Nested Sampler (runtime >1 day

log(Z) = -5529.6521 +/-0.45
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Bayesian Optimisation

Comparison vs traditional methods

Faster for slow
likellhoods but runtime
INncreases more steeply...

MCMC runtime dominated by
likelihood evaluation time, BO
by the other steps
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We need about 10-100x
fewer likelihood
evaluations throughout!

Bayesian Optimisation

Comparison vs traditional methods

Number of samples

LCDM + nuisance parameters
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Bayesian Optimisation

Summary

Gaussian Process regression + active acquisition strategy can be used to
perform Bayesian inference for cosmology

High efficiency of the algorithm compared to traditional methods based on random
sampling

Can obtain parameter posteriors + evidence for complicated distributions and
computationally expensive likelihoods

Stay tuned for paper and code (JAX based) + more applications to cosmology
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Thank you!

Contact: ameek.malhotra@swansea.ac.uk
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