Explaining 95 GeV Anomalies in Type – 1 2HDM

Authors: Akshat Khanna, Stefano Moretti, Agnivo Sarkar arXiv : 2409.02587

Akshat Khanna, IIT Gandhinagar, India

PASCOS'25

Durham University

Standard Model Of Particle Physics

Source : https://www.energy.gov/science/doe-explainsthe-standard-model-particle-physics

Beyond Standard Model

Present experimental uncertainties leave room for a BSM interpretation of the detected Higgs boson.

Could there by hints for an additional Higgs boson in the currently existing searches?

Experimental Results

- Di-photon channel CMS / ATLAS
- Di-tau channel CMS
- Bottom quark pair LEP

Explaining the Anomalies

Explaining the Anomalies

Signal Strength is defined as,

$$\mu(\Phi_{95})_X = \frac{\sigma(\Phi_{95}) \times \mathrm{BR}(\Phi_{95} \to X)}{\sigma^{\mathrm{SM}}(\Phi_{95}) \times \mathrm{BR}^{\mathrm{SM}}(\Phi_{95} \to X)},$$

• Di-photon resonances played a vital role in the discovery of 125 GeV Higgs Boson.

- Di-photon resonances played a vital role in the discovery of 125 GeV Higgs Boson.
- CMS 8 TeV (Run 1) and 1st year 13 TeV (Run 2) 2.8 σ at 95.3 GeV

 $\mu(\Phi_{95})_{\gamma\gamma}^{1\text{st-year}} = 0.6 \pm 0.2.$

- Di-photon resonances played a vital role in the discovery of 125 GeV Higgs Boson.
- CMS 8 TeV (Run 1) and 1st year 13 TeV (Run 2) 2.8 σ at 95.3 GeV

$$\mu(\Phi_{95})_{\gamma\gamma}^{1\text{st-year}} = 0.6 \pm 0.2.$$

• CMS – Full dataset 13 TeV - 2.9 σ at 95.4 GeV

$$\mu(\Phi_{95})_{\gamma\gamma} = 0.33^{+0.19}_{-0.12}$$

- Di-photon resonances played a vital role in the discovery of 125 GeV Higgs Boson.
- CMS 8 TeV (Run 1) and 1st year 13 TeV (Run 2) 2.8 σ at 95.3 GeV

 $\mu(\Phi_{95})_{\gamma\gamma}^{1\text{st-year}} = 0.6 \pm 0.2.$

• CMS – Full dataset 13 TeV - 2.9 σ at 95.4 GeV

$$\mu(\Phi_{95})_{\gamma\gamma} = 0.33^{+0.19}_{-0.12}$$

• ATLAS – Full dataset 13 TeV - 1.7 σ at 95.4 GeV $\mu(\Phi_{95})_{\gamma\gamma} = ~0.18 \pm 0.1$

$$\mu_{\gamma\gamma}^{\exp} = \mu_{\gamma\gamma}^{\text{ATLAS+CMS}} = 0.24_{-0.08}^{+0.09},$$

Di-tau excess

• Higgs bosons expected to have coupling with fermions that increases with fermion mass

Di-tau excess

- Higgs bosons expected to have coupling with fermions that increases with fermion mass
- CMS 13 TeV Run 2 dataset. most pronounced excess at 100 GeV with local and global significance as 3.1 σ and 2.7 σ

Di-tau excess

- Higgs bosons expected to have coupling with fermions that increases with fermion mass
- CMS 13 TeV Run 2 dataset. most pronounced excess at 100 GeV with local and global significance as 3.1 σ and 2.7 σ
- At around 95 GeV 2.6 σ and 2.3 σ

$$\mu(\Phi_{95})_{\tau\tau} = 1.23^{+0.61}_{-0.49}$$

LEP excess

• Maximum Centre of Mass energy – 209 GeV

• Excluded SM Higgs Boson with masses upto 114 GeV

LEP excess

- Maximum Centre of Mass energy 209 GeV
- Excluded SM Higgs Boson with masses upto 114 GeV

• Higgstrahlung

 $e^+e^- \rightarrow Z\Phi_{95} \rightarrow Zb\bar{b}$

• 2.3 σ at 98 GeV

• 95 GeV

 $\mu(\Phi_{95})_{bb} = 0.117^{+0.057}_{-0.057}$

Summary

Channel	Signal Rate	Local (global) significance		
$gg o \Phi_{95} o \gamma\gamma$	$\mu(\Phi_{95})_{\gamma\gamma} = 0.33^{+0.19}_{-0.12}$	$2.9(1.3)\sigma$		
$gg \to \Phi_{95} \to \tau^+ \tau^-$	$\mu(\Phi_{95})_{\tau\tau} = 1.23^{+0.61}_{-0.49}$	$2.6(2.3)\sigma$		
$e^+e^- \to Z\Phi_{95} \to Zb\bar{b}$	$\mu(\Phi_{95})_{bb} = 0.117^{+0.057}_{-0.057}$	$2.3(<1)\sigma$		

2HDM – Type 1

$$V(\phi_1, \phi_2) = m_{11}^2 \phi_1^{\dagger} \phi_1 + m_{22}^2 \phi_2^{\dagger} \phi_2 - m_{12}^2 \left[\phi_1^{\dagger} \phi_2 + \phi_2^{\dagger} \phi_1 \right] + \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \left[\frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 + h.c. \right] + \left\{ \left[\lambda_6 (\phi_1^{\dagger} \phi_1) + \lambda_7 (\phi_2^{\dagger} \phi_2) \right] (\phi_1^{\dagger} \phi_2) + h.c. \right\}.$$

$$V(\phi_1, \phi_2) = m_{11}^2 \phi_1^{\dagger} \phi_1 + m_{22}^2 \phi_2^{\dagger} \phi_2 + \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \{ \frac{\lambda_5}{2} (\phi_1^{\dagger} \phi_2)^2 + h.c. \}.$$

$$\phi_1 \to \phi_1, \, \phi_2 \to -\phi_2.$$

$$\begin{split} \lambda_{1} &= \frac{c_{\alpha}^{2} m_{H}^{2} + s_{\alpha}^{2} m_{h}^{2}}{v^{2} c_{\beta}^{2}}, \\ \lambda_{2} &= \frac{c_{\alpha}^{2} m_{h}^{2} + s_{\alpha}^{2} m_{H}^{2}}{v^{2} s_{\beta}^{2}}, \\ \lambda_{3} &= \frac{(m_{H}^{2} - m_{h}^{2}) s_{\alpha} c_{\alpha} - (\lambda_{4} + \lambda_{5}) v^{2} c_{\beta} s_{\beta}}{v^{2} c_{\beta} s_{\beta}}, \\ \lambda_{4} &= \frac{m_{A}^{2} - 2 m_{H^{\pm}}^{2}}{v^{2}}, \\ \lambda_{5} &= -\frac{m_{A}^{2}}{v^{2}}. \end{split}$$

$$\begin{aligned} -\mathcal{L}_{Yukawa} &= +\sum_{f=u,d,\ell} \left[m_f f \bar{f} + \left(\frac{m_f}{v} \kappa_h^f \bar{f} f h + \frac{m_f}{v} \kappa_H^f \bar{f} f H - i \frac{m_f}{v} \kappa_A^f \bar{f} \gamma_5 f A \right) \right] \\ &+ \frac{\sqrt{2}}{v} \bar{u} \left(m_u V \kappa_{H^+}^u P_L + V m_d \kappa_{H^+P_R}^d \right) dH^+ + \frac{\sqrt{2} m_\ell \kappa_{H^+}^\ell}{v} \bar{\nu}_L \ell_R H^+ + h.c. \end{aligned}$$

Couplings

• HVV $\longrightarrow \cos(\alpha - \beta)$

• hVV $\longrightarrow \sin(\alpha - \beta)$

Constraints

Solutions

• Overlapping Solution

$$\chi^2_{\gamma\gamma,\tau^+\tau^-,b\bar{b}} = \frac{(\mu_{\gamma\gamma,\tau^+\tau^-,b\bar{b}}(\phi) - \mu^{\exp}_{\gamma\gamma,\tau^+\tau^-,b\bar{b}})^2}{(\Delta\mu^{\exp}_{\gamma\gamma,\tau^+\tau^-,b\bar{b}})^2}.$$

$$\chi^{2}_{\gamma\gamma,\tau^{+}\tau^{-},b\bar{b}} = \chi^{2}_{\gamma\gamma} + \chi^{2}_{\tau^{+}\tau^{-}} + \chi^{2}_{b\bar{b}}.$$

 $\mu_{\tau^{+}\tau^{-}}(h+A) = \mu_{\tau^{+}\tau^{-}}(h) + \mu_{\tau^{+}\tau^{-}}(A), \quad \mu_{\gamma\gamma}(h+A) = \mu_{\gamma\gamma}(h) + \mu_{\gamma\gamma}(A), \quad \mu_{b\bar{b}}(h).$

Parameter	Scan Range
m_H	$125 {\rm GeV}$
m_h	$94~{\rm GeV}-96~{\rm GeV}$
m_A	$94~{\rm GeV}-96~{\rm GeV}$
$m_{H^{\pm}}$	$140~{\rm GeV}-250~{\rm GeV}$
aneta	0.5 - 100
$\sin(\beta - \alpha)$	-0.60 - 0.60

ATLAS-CONF-2021-053

m_H	m_h	m_A	$m_{H^{\pm}}$	aneta	$\sin(\beta - \alpha)$	$\mu_{\tau^+\tau^-}(h+A)$	$\mu_{\gamma\gamma}(h+A)$	$\mu_{bar{b}}(h)$	$\chi^2_{\tau^+\tau^-+\gamma\gamma+b\bar{b}}$
125.0	94.36	94.44	166.63	2.33	-0.17	0.836	0.296	0.027	3.402

Parameter	Scan Range
m_H	$125~{\rm GeV}$
m_h	$94~{\rm GeV}-96~{\rm GeV}$
m_A	$90~{\rm GeV}-250~{\rm GeV}$
$m_{H^{\pm}}$	$140~{\rm GeV}-250~{\rm GeV}$
aneta	0.5 - 100
$\sin(\beta - \alpha)$	-0.60 - 0.60

Conclusion

In the Type – I, 2 Higgs Doublet Model

• There exist a possible explanation of 95 GeV anomaly for the case of the overlapping solution at 1σ .

• There does not exist a possible explanation for the single solution.

• The above conclusions remain true even if add a softly symmetry breaking term to the potential.

Thank you