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Basic Introduction



Cosmic Inflation

explains the homogeneity, flatness, and absence of unwanted relics,
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and the origin of large-scale structures of the Universe.
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[Akrami et al., Planck 2018, 1807.06211]

Phenomenologically successful.

What is the underlying model
in, e.q9., supergravity or String Theory?



Multiple Fields

There are many fields in the SM of particle physics.
There are many scalar fields in the MSSM.

There are many moduli (approximately massless scalar fields) in String Theory.

Multifield inflation

A 2D slice of a 6D CY quintic manifold.
[Andrew J. Hanson, from Wikipedia] [Produced by ChatGPT]



Motivation

Top-down
Fundamental

Inflation In Supergravity

Bottom-up ol R
Phenomenological | 5.

Embed generic inflationary models
Only several generic mechanisms are known.

[BICEP/Keck, 2110.00483]



Difficulties of Inflation in Supergravity
and Their Solutions




Potential tends to be Steep or Negative

We need flat and positive potential for slow-roll inflation. However...

V=e" (K"fDiWDJTW— 3] W|2) where DW =W, + KW.
T T

exponentially steep negative
(the 1 problem)
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One typically impose a(n approximate) shift symmetry on the Kahler potential.
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Potential tends to be Steep or Negative

We need flat and positive potential for slow-roll inflation. However...

V=e" (K"fDiWDJTW— 3] W\z) where DW =W, + KW.
T T

exponentially steep negative
(the 1 problem)

One typically impose a(n approximate) shift symmetry on the Kahler potential.

K(®, D, )=K(®—®,--) invariantunder ® - ® +r (r € R).

This Kills the exponential dependence, but the potential tends to be negative

Vo~ —3eK | W in the large-field region where |W,| < | W]
for generic polynomial superpotentials.



Typical Solution: Introducing a Stabilizer Field

K(®,9,S,5) =K(®-,85,5) ®: inflaton superfield

W(®D, S) = S (D) S: stabilizer superfield

Arrange the model so that S = 0 and hence W = 0 during inflation.

V= k¥ @)



Alternative Solution: Non-minimal Self-Interaction

W(®) can be generic, while the essential form of K in the canonical basis is

S

_ _ | _ _
K(®, D) = ik(® — D) — —(® — P)> — =—(® — D)* + --
2 12
giving positive canonical SUSY-breaking mass term
contribution toV Kinetic term stabilizing the sinflaton

V = eKKP® ((K2 —3Kp) | W + 2k Im(WWg) + | Wy, ‘2)

Positive and flat potential can be obtained for K(D(T)K2 > 3.



Multi-(super)field Extension



Proposed Setup

K(®', @) = K(®' — ®') (shift-symmetric; i = 1,2,3,---, N)
W(®') can be generic.

We assume that there exists a point in the field space where the cubic terms are negligible.
Around the point, after canonical normalization of the quadratic term, we can expand K as follows

S ST .
Tl l 177 1k 71 _
K—ZKZ-I — — i-II]——II]II + - where [I' = @' — @°
2 Y 12
giving positive canonical SUSY-breaking mass terms
contributions toV Kinetic terms stabilizing the imaginary parts

V=e¢eX ((Kifkiicj —3)|W|*+Im (KiflchW/i) + KUWZV_V]>



Stabilization of Imaginary Parts

The SUSY breaking mass squared matrix: 12(H 2 4 m%,z)fl;,w

12(H? 4+ m3),)

Field expectation value: |y'| <

where & = (GiCIDi/\/ G’G;) is the (time-dependent) sGoldstino

with G = K + In| W\z being the total Kahler potential.

Imaginary parts can be stabilized by sufficiently large positive C.



Some (Optional) Simplifications

For a superpotential with real coefficients,

V=e" ((Kiflcilcj —-3) | W) +W+ K‘»’WIV_V]> .

f we take KY KiK; = 3, the first term also vanishes

V:eKKifW/iW/jz Z \Wl|2

This is essentially the global SUSY-breaking F term.



Example Models



(Quasi-)de Sitter from (Nearly) Constant W

W = W, = const. Y = eKeim(@ - (KﬁKin _ 3) VAR

De Sitter can be realized.



(Quasi-)de Sitter from (Nearly) Constant W
W = W, = const. V= Ko=) (K, — 3) | Wy 2.

De Sitter can be realized. Let’s modify it to realize slow-roll inflation.
W =W, (1 — age ™ — age™" — agye PPt Y)

Multi-field exponentially flat potential
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Hybrid Inflation

W = ’KD(MZ o ‘PI‘PZ) — K(% + K\%l + K\%z

V
5 = M= P+ QP+ [ ) + (= 3) [ @[ M2 = W) |

During inflation, i.e., for |®| > |®_| =
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Polynomial Chaotic Inflation

2-field model
W= L@ + 972 V= [mg P10 + [my *| W]
2 2 Kq) T K\Ij L = 5
+7Im(m¢m\PCD‘P ) + jlm(mq,mq,(l) V)
2
+Z(K§) + kg — 3) | me®* + my'P?
N-flation
m Al 2 3
— \2 . — .
W= 2, @) V=m? & 1 +—| @]
i=1 4
K (after stabilization of the imaginary parts)
with K =——



Axionic Models

W= W, [1 — aeloP+Hs?) _ qloiPa®+hi?)

V=x*-3+a*k* -3 +ﬁ§)+ﬁé) + a*(k* = 3 + fp” + Py’
—2a(k* = 3)cos(fp® + fy¥) — 2a/(k* — 3)cos(fp®@ + fiy'P) We utilized the Kim-Nilles-Peloso
+2aa'(k* — 3 + Bolo + Poi)cos [(,B(’D — Po)P + (Vg — ,B\y)qj] alignment mechanism.




Axionic Models

W= W, [1 — aeloP+Hs?) _ qloiPa®+hi?)

V=1u?=3+a’ k> =3+ 3+ 2) + (k> =3+ > + i)
—2a(k? — 3)cos(fp® + feP) — 2a'(k* — 3)cos(B,® + B, P) .

, We utilized the Kim-Nilles-Peloso
+20a'(k” — 3 + PoP o + PyPy)COS [(ﬁc’b — Po)P + (Py — ﬂ\y)qj] alignment mechanism.

R-axion models

Re W : R-axion Ky =K _ _
¥ : Rsaxion Ko =0  V=eKe™ D2 3)|WI*+ K| Wy + Ko W/

® : Inflaton W = W(®)






Summary

Realizing (or embedding) Inflation in supergravity is nontrivial.

We have extended our previous proposal without the stabilizer fields
iInto multi-superfield setups.

N | o Ea ]
K = il — UIZIJ—IL;HJI’CI% . where Iz @ —& W : generic.

This Is not a particular model but a mechanism to embed a large class of models.

Inflationary observables such as isocurvature perturbations and non-Gaussianity
are to be studied.






On Kahler Geometry

Holomorphic sectional curvature (along the Goldstino direction)

. 3 k l_
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where f! = Gi/\/GjGj s the Goldstino direction with G = K + In| W|* being the total Kahler potential.

H(f) = -

~ 26, f S = 26¢0ee > 0

The sGoldstino is & = f@'.

The sign is opposite to the case of hyperbolic geometry (e.g., a-attractor).



On the Absence of Cubic Terms

It Is like a requirement of the existence of the vacuum.

1 L T .. fl“ ..
K =il — —o,;I'F + i—]kIlI]Ik — ]kllllflkll + -
2 Y 6 12
Then,
V ~ eKKID,WD;W + - ¥'=2Imd = — il'/2

Assuming this is the dominant part of the potential for the imaginary parts,
the linear term  (k; + 7,¢) should be negligible at the minimum.



Other Choices of Kahler Potential

For example, one may consider a logarithmic Kahler potential

K= — Z 3a;log ll — ; (D! — CTD’T) + cfl-(CDi — CTD’T)4 + ] .
. O‘i

After the stabilization of the imaginary parts, it is essentially same as the previous examples.
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V=g (Win+ i, WW; — ia WW, + a,at | W\Z) _3 W)



