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Cosmic Inflation

* Inflation 1s a very brief epoch when the universe expanded exponentially

* The dynamics 1s determined by Einstein’s General Theory of Relativity :
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Cosmic Inflation

* Inflation 1s a very briet epoch when the universe expanded exponentially

* The dynamics 1s determined by Einstein’s General Theory of Relativity :
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Background geometry :

FRW metric Slowly rolling scalar field
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A variant Inﬂationary scenario:
Warm Inflation



Cold Inflation vs Warm Inflation
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Why Warm Inflation?

Warm Inflation does not require a subsequent “reheating” phase, physics
of which is still unknown. WI smoothly ends in a radiation dominated phase

WI has a more enhanced scalar power spectrum than Cl. Thus yields a
smaller tensor-to-scalar ratio. The potentials that are ruled out in ClI for
generating large tensor-to-scalar ratios can be accommodated in WI.
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Why Warm Inflation?

o Strong dissipative (Q > 1) WI models preter small-field inflation models
whereas Cl is often realised in large-field models. Present data prefers
small-field models.

o WI signiticantly alleviates the eta-problem and the gravitino problem in the
context of Supergravity.

 WI Is favoured over Cl it one considers the Swampland Conjectures
al’iSiﬂg in Strlﬂg TheOry- PRD '19 (2 papers), Physics of the Dark Universe 20, PRD "20 (two papers)
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Abstract: (APS)

The standard model of hot big-bang cosmology requires initial conditions which are problematic in two ways: (1) The early universe is assumed to be highly homogeneous, in spite of the fact that
separated regions were causally disconnected (horizon problem); and (2) the initial value of the Hubble constant must be fine tuned to extraordinary accuracy to produce a universe as flat (i.e., near
critical mass density) as the one we see today (flatness problem). These problems would disappear if, in its early history, the universe supercooled to temperatures 28 or more orders of magnitude
below the critical temperature for some phase transition. A huge expansion factor would then result from a period of exponential growth, and the entropy of the universe would be multiplied by a huge
factor when the latent heat is released. Such a scenario is completely natural in the context of grand unified models of elementary-particle interactions. In such models, the supercooling is also
relevant to the problem of monopole suppression. Unfortunately, the scenario seems to lead to some unacceptable consequences, so modifications must be sought.
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Today’s Topic: “How inflation ends?”
a.k.a. Gracetul Exit



Gracetul Exit?

Inflation 1s a phase when the Universe has expanded exponentially

(accelerated) for a very brief amount of time.

Feeding in the FRW metric into the Einstein Field equations with the matter
as perfect fluid p=wp, we get two Friedmann equations which tell us about the
expansion history of the universe:
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Thus w=-1 fluid can easily drive inflation, like a Cosmological Constant A

The problem 1s with CC inftlation will never end and hence no Gracetul Exit
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The inflaton & 1its slow-roll

A simple scalar field’s energy density and pressure:

(Vo) (Vo)*

202 6a2

Po = %q’ﬁQ + V(o) D= %q? — V(o)

Potential energy dominated scalar ﬁled, a.k.a. the inflaton ﬁeld, can
drive intlation

The potential needs to be very flat, so that the kinetic term 1s
negligible ——— slow-roll of the inflaton on its flat potential

M2 (Vo\°
Slow-roll parameter ey = 2P1 (ng) < 1
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Slow-roll & Gracetul Exit

e Slow-roll EoM of inflaton:

o It turns out e<< | implies

%cﬁﬂ < V(9)

e Thus intlation ends when € ~ 1
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Graceful Exit in Warm Intlation

The slow-roll EoM of the inflaton field in Warm Intlation

o
H(1l o — =
3H(1+ Q) e ——— 0 =

Thus inflation happens when ev «1+Q and ends when ev ~1+@Q
Graceful exit depends on the evolution of both € and O

Assuming a simple form of the dissipative coethcient T oc TP¢¢

dlney  4ey — 2ny din@Q)  (2p +4)ev — 2pny — 4eky

dN 1+Q dN 4—p+(4+p)Q




How many ways Warm Inflation can
Gracefully exit?
1.e. meeting the condition e=1+Q
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When & grows

1+0Q

Number of e-fo.ds Number of c-folds Number cf e-folds

If Q increases faster than € then there would be no gracetul exit!!
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Gracetul Exit in Power-law inflation possible in WI !!
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When e decreases



When e decreases
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These Graceftul Exit conditions put constraint
on the combination of the inflaton potential
and the form of the dissipative coeftficient



(a)3d parameter space (c, p,n) (b)Plane ¢ = 0 (c)Plane ¢ = 2



Does Warm Inflation always gracetully exits
to a radiation dominated Universe?



e The EoMs of Warm Inflation
6+3Ho+V,g=—T(T, )¢ pr +4Hpg = Y(T, ¢)¢?
e When a constant radiation bath 1s maintained

3
PR ~ iQIOK.E.

* In models where Q decreases, radiation energy density falls below
kinetic energy density

* Warm Inflation can gracetully exit in a kination period in those models!

* Such kination period can have potential Gravitational Wave signatures!
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Background Analysis of Warm 1ntlation 1s not a
mundane task!
It reveals the nature of the Warm Inflation model






