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Towers of Unstable States
● A wide variety of scenarios for new-physics predict towers of massive, 
unstable states with a broad spectrum of masses, cosmological 
abundances, and lifetimes.

String theory (string moduli, axions, etc.)

Theories with extra spacetime dimensions (KK towers)

Scenarios with confining dark/hidden-sector gauge groups (bound-
state resonances) 
Scenarios which lead to the production of primordial black holes 
with an extended mass spectrum (the black holes themselves)

● Such towers are a generic feature of, for example,...

● In some cases, such states can give rise to astrophysical signals, signals 
at colliders, etc.; in others, they are too heavy/short-lived.



  

Cosmological Consequences
● The presence of such towers can have a significant impact on early-
universe cosmology – even if the tower states are too heavy/short-lived 
to be accessible.

● Indeed, such towers can give rise to epochs of cosmic stasis: epochs 
wherein the abundances of multiple cosmological energy components 
(matter, radiation, etc.) remain effectively constant over an extended 
period.

● These epochs are often global attractors: if the basic conditions under 
which they arise are satisfied, the universe will evolve toward them.

Tightly ConstrainedLess Constrained

Many 
Possibilities

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛21]



  

Cosmological Stasis
● Cosmological stasis is a phenomenon in which the abundances of 
multiple cosmological energy components (matter, radiation, etc.) remain 
effectively constant over an extended period.

● In order to see how this phenomenon can arise, let’s consider a universe 
consisting only of massive matter (w = 0) and radiation (w = 1/3).
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Cosmological Stasis
● Cosmological stasis is a phenomenon in which the abundances of 
multiple cosmological energy components (matter, radiation, etc.) remain 
effectively constant over an extended period.

● In order to see how this phenomenon can arise, let’s consider a universe 
consisting only of massive matter (w = 0) and radiation (w = 1/3).

Abundance

Energy Transfer

Boltzmann Equations

Time

● Expansion drives ΩM upward, Ωγ downward.
● However, in the presence of additional 
dynamics, the situation changes.

“Pump” from 
component 

with higher to 
lower w.

● If some process “pumps” energy density 
from matter to radiation at a rate                  , 
it can counteract the effect of expansion.



  

Cosmological Stasis
● We’ve seen that stasis arises when source and sink tems in the 
Boltzmann equations “pump” energy density from one component to 
another at a rate that compensates for Hubble expansion.

Q So how can such a “pump” arise in practice?
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So how can such a “pump” arise in practice?

This is why we expect stasis to be a fairly common feature in BSM 
cosmologies.  As discussed earlier, towers of massive, unstable states 

are a generic feature of many well-motivated extensions of the SM!



  

A Concrete Realization

● Let’s consider a tower of N such matter states (wM = 0) with...
Masses Decay Widths Initial Abundances

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛21]
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● Let’s consider a tower of N such matter states (wM = 0) with...
Masses Decay Widths Initial Abundances

● Towers of states with mass spectra of this form arise naturally in many 
extensions of the Standard Model.

KK excitations of a 5D scalar:

Bound states of a strongly-
coupled gauge theory:

● Decay to radiation (wγ = 1/3) 
through contact operators of 
dimension d implies a scaling:

● Scaling of initial abundances 
depends on how they’re 
generated:

Misalignment production

Thermal freeze-out

Universal inflaton decay

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛21]

PBH evaporation

Gravitational production

...
[Long, Shams Es Haghi, Venegas ‛25]



  

The Emergence of Stasis
● In BSM scenarios of this sort, stasis emerges 
generically, with minimal additional assumptions.

Parameter Choices

Stasis Era

Entrance Exit

Stasis Abundances

● The matter and radiation abundances during stasis turn out to depend on 
the model parameters α, γ, and δ. 



  

The Emergence of Stasis
● In BSM scenarios of this sort, stasis emerges 
generically, with minimal additional assumptions.

Parameter Choices

Stasis Era

Entrance Exit

Stasis Abundances

● The effective equation-of-state parameter w for 
the universe is constant during stasis – but takes a 
non-canonical value within the range 0 < w < 1/3.



  

Stasis as a Global Attractor

State-Space Trajectories ΩM vs. t For Different ΓN-1/H(0) 

● Perhaps even more importantly, achieving cosmological stasis does 
not require a fine-tuning of the initial conditions for ΩM and H – or, 
alternatively, for Ωm and its time-average          – or for the ratio ΓN-1/H(0).

● In fact, stasis is a global attractor in the sense that ΩM and Ωγ will 
evolve toward their stasis values regardless of what these initial 
conditions are.
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Other Realizations of Stasis
● While I’ll be concentrating of stases that involve matter and radiation 
for the remainder of this talk, I want to emphasize that stasis is a very 
general phenomenon. 

● For example, stasis can also involve vacuum energy.  A natural 
realization of such a stasis involves a tower of oscillating scalar fields 
with a spectrum of masses mℓ which transition from overdamped 
behavior (wℓ ≈ -1) to underdamped (             ) behavior when 3H(t) ≈ 
2mℓ. [Dienes, Heurtier, Huang, Tait, BT ‛23; Dienes, Heurtier, Huang, Tait, BT ‛24 ]

● It is also possible for a stasis 
to develop involves more than 
two components. 

[Dienes, Heurtier, Huang, Tait, BT ‛23]

● In certain situations, stasis 
can also arise due to the 
annihilation of non-relativistic 
particles into radiation. 

[Barber, Dienes, BT ‛24]

Triple Stasis 



  

Beyond the Background Cosmology
● In terms of the homogeneous background cosmology (the evolution of a 
and ρcrit), a stasis epoch mimics an epoch of perfect-fluid domination 
(PFD) wherein the fluid has an equation-of-state parameter wPF = w.
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the perturbation level?    

Behaves like massive matter: wχ = 0.

Has ρχ      ρcrit  during the epoch of interest and thus no 
appreciable impact on the background cosmology.

Interacts with other components only through gravity.
● In other words, χ behaves like a population decoupled (e.g. frozen-out) 
dark-matter particles.

● We’ll now examine at how density perturbations for χ – and in particular 
its density contrast δχ ≡ Δρχ/ρχ – evolves during a matter/radiation stasis 
with 0 < w < 1/3.  As we’ll see, the results differ significantly from the 
corresponding results for PFD!   

χ



  

Spectator Density Contrast

● The spectator is decoupled (no source/sink terms): 

In order to answer this question, let’s first begin by reviewing some 
general aspects of how δχ (or its Fourier transform δkχ) evolves.A
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Spectator Density Contrast

● The spectator is decoupled (no source/sink terms): 

Skχ

● The solution (applying boundary 
conditions at early times) is:

Green’s Function

Φk at early times

● The evolution of Φk follows from the Einstein equation:

In order to answer this question, let’s first begin by reviewing some 
general aspects of how δχ (or its Fourier transform δkχ) evolves.A

● This relation yields an equation of motion for δkχ: 

Sum over cosmological components X

Effective sound speed of XEffective equation-
of-state parameter

Background energy 
density of X

Source 
Term



  

Perfect-Fluid Domination
● First, let’s consider a PFD epoch in which the equation of state for the 
perfect fluid is p = wPFρ, where wPF is a constant. 

● In this case,                   and                    . Vanishes

● The resulting sourceless equation yields: 

[Redmond, Trezza, Erickcek ‛18]

Evolution of Φk Evolution of δkχ

Dashed 
lines: 

horizon 
entry

super-
horizon Source effect Plateau



  

Matter/Radiation Stasis
● Now let’s consider the situation during an epoch of matter/radiation 
stasis epoch. 

● In this case, there are two components with non-negligible ΩX.  Matter 
with                          and radiation with                          . 

● The equations of motion for Φk 
and the perturbations in the stasis 
sector are therefore non-trivially 
coupled during stasis.

Doesn’t generally vanish

Evolution of Φk

Stasis
PFD

● These effects can dramatically 
impact on how δkχ evolves!



  

Growth Through Stasis

Solid curves: stasis

● We find that after entering the horizon (when k ~ aH), modes experience 
enhanced, power-law growth until stasis ends.

Horizon entry

MD: 
δkχ ~ a

,   where

RD: 
δkχ ~ log(a)

Stasis:
δkχ ~ a 

q(w)
Dashed curves: PFD

Stasis ends

● Thus, even at the perturbation level, stasis interpolates between 
radiation and matter domination!

[Erickcek, Sigurdson ‛11; Fan, Ozsoy, Watson ‛14; 
Erickcek ‛15 ]

● During an EMDE, δkχ grows linearly with a.



  

Why All This Matters
● Small primordial inhomogeneities in the matter density provide the seeds 
for the formation of structure at later times. 

● Enhancements or suppressions 
in the linear matter power 
spectrum P(k) = |δkm|2 relative to 
the standard cosmology across 
different ranges of k can have a 
observational consequences for 
cosmic structure.

[Bechtol et al. ‛21 ]

Dimensionless Linear Matter Power Spectrum
[Bechtol et al. ‛21 ]

● In the stasis case, they could 
lead to the formation of 
microhalos – small, dense 
clumps of matter.
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Other Observational Signatures of Stasis

Stasis modifies the predictions for the CMB observables r and ns 
that follow from a given inflationary model.

● In addition to its effect on the matter power specturm, stasis can also 
have a number of additional potentially observable consequences.

Stasis can modify the spectrum of the stochastic gravitational-
wave background in characteristic ways.

Effect on the SGWB

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛22]

[Dienes, Huang, Heurtier, Kim, Tait, BT ‛22]

A stasis involving vacuum 
energy and matter can lead to 
accelerated expansion – and 
potentially even to 
phenomenologically viable 
models of cosmic inflation.

[Dienes, Heurtier, Huang, Tait, BT ‛24 ]

Detector Sensitivities

See Lucien 
Heurtier’s 

plenary talk 
from Monday.



  

Summary
● Stable, mixed-component cosmological eras – i.e. stasis eras – can 
have a variety of implications for observational cosmology. 

● In this way, this power-law growth interpolates between the behaviors 
that δkχ exhibits during matter domination and radiation domination.

● The evolution of density perturbations is modified during stasis.  For 
example, we’ve seen that the density contrast δkχ for a spectator matter 
component grows like a power law with an exponent 0 < q(w) < 1.  

● This power-law growth can lead to enhanced structure on small 
scales, including potentially the formation of microhalos.

● Stasis can give rise to a variety of other observational signatures as well.
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