

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Juhi Dutta, Jayita Lahiri, Cheng Li, Gudrid Moortgat-Pick, Sheikh Farah Tabira, •Julia Ziegler

Benchmarking Dark Matter Candidates in 2HDMS: Prospects for Fututre Colliders

arXiv: 2504.14529

$$V_{SM} = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

arXiv: 2504.14529

$$V_{SM} = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

Explain:

- cold dark matter (DM)

- 95 GeV excess (at LHC and LEP)

[Notation as in: Baum and Shah, arXiv: 1808.02667]

$$V = V_{2HDM} + V_{S}$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.\right]$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c.\right]$$

$$F_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c.\right] + \left[\frac{\lambda_{2}^{\prime \prime}}{6} (S^{2} S^{\dagger} S) + h.c.\right] + \frac{\lambda_{3}^{\prime \prime}}{4} (S^{\dagger} S)^{2} + S^{\dagger} S [\lambda_{1}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}) + h.c.$$

Type II, Couplings to Fermions

Down-type quarks	Leptons	Up-type quarks
Φ_1	Φ_1	Φ2

V_{2HDMS} Symmetries

$ \begin{array}{c} \Phi_{j} \stackrel{U(1)}{\rightarrow} e^{i\theta} \Phi_{j} \\ \Phi_{j}^{\dagger} \stackrel{U(1)}{\rightarrow} e^{-i\theta} \Phi_{j}^{\dagger} \end{array} $	avoids charge-parity violation
$\Phi_1 \xrightarrow{Z_2} - \Phi_1$ $\Phi_2 \xrightarrow{Z_2} \Phi_2$ (softly broken by m_{12}^{2})	avoids flavour changing neutral currents
	stabilization of DM

[Notation as in: Baum and Shah, arXiv: 1808.02667]

$$\begin{split} V &= V_{2HDM} + V_{S} \\ V_{2HDM} &= m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} \\ &+ \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) \\ &+ \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right] \\ V_{S} &= m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}'^{2}}{2} S^{2} + h.c. \right] \\ &+ \left[\frac{\lambda_{1}''}{24} S^{4} + h.c. \right] + \left[\frac{\lambda_{2}''}{6} (S^{2} S^{\dagger} S) + h.c. \right] + \frac{\lambda_{3}''}{4} (S^{\dagger} S)^{2} \\ &+ S^{\dagger} S [\lambda_{1}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}' \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}' \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}' \Phi_{2}^{\dagger} \Phi_{2}) + h.c.] \end{split}$$

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + \rho_{i} + i\eta_{i}) \end{pmatrix} \qquad \langle \Phi_{i} \rangle = \begin{pmatrix} 0 \\ \frac{v_{i}}{\sqrt{2}} \end{pmatrix}$$
$$S = \frac{1}{\sqrt{2}}(v_{S} + \rho_{S} + iA_{S}) \qquad \langle S \rangle = \frac{v_{S}}{\sqrt{2}}$$
$$DM \text{ Candidate}$$

DM Properties:

- massive
- electrically neutral
- colourless
- stable

DM mass:

$$m_{A_S}^2 = \frac{\partial^2 V}{\partial A_S^{\dagger} \partial A_S} |_{\Phi_1 = \langle \Phi_1 \rangle} |_{\Phi_2 = \langle \Phi_2 \rangle, S = \langle S \rangle}$$
$$= -(2m_S'^2 + v_S^2(\frac{\lambda_1''}{3} + \frac{\lambda_1''}{3}) + 2(\lambda_4' v_1^2 + \lambda_5' v_2^2)$$

[Notation as in: Baum and Shah, arXiv: 1808.02667]

$$V = V_{2HDM} + V_{S}$$

$$V_{2HDM} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - [m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c. \right]$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c. \right]$$

$$F_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c. \right]$$

$$V_{S} = m_{S}^{2} S^{\dagger} S + \left[\frac{m_{S}^{\prime 2}}{2} S^{2} + h.c. \right] + \left[\frac{\lambda_{2}^{\prime \prime}}{6} (S^{2} S^{\dagger} S) + h.c. \right] + \frac{\lambda_{3}^{\prime \prime}}{4} (S^{\dagger} S)^{2} + S^{\dagger} S [\lambda_{1}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}] + [S^{2} (\lambda_{4}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}^{\prime} \Phi_{2}^{\dagger} \Phi_{2}) + h.c.]$$

[Notation as in: Baum and Shah, arXiv: 1808.02667]

				DM55 _{w95} D	M156 _{w95}	DM1000 _{w95}	DM70	DM400	DM1000	_
DM P	henome	enology	290 125 - 15 290 290 290 290 290 290 290 290	$\frac{decay}{allowed: }$ $\frac{A H^{\pm}}{h_3}$ $\frac{h_1 h_2}{h_5}$ $\frac{h_1 h_2}{h_5}$ $\frac{h_1 h_2}{h_5}$	$\frac{h_3 A H^{\pm}}{A_5}$	$\frac{h_3 A H^{\pm}}{A_5}$	$\frac{h_2 h_3}{h_2 h_3} A_5$	$\frac{h_1}{h_2} \xrightarrow{h_3} H^{\pm}$	h_{1} h_{1} h_{2} h_{2} h_{3} h_{3} h_{4} h_{4} h_{4}	- 1000 - 1000 - 156 - 55 70
Relic Density (=amount of I today), constraints fr	Relic DensityDirect Detection CSIndirect Detection CS= amount of DM left in universe :oday), constraints from Planck : Ωh²≈0.12Direct Detection CSIndirect Detection CS= amount of DM left in universe coday), constraints from LUX-ZEPLIN (LZ)Indirect Detection CS(=annihilation of two DM particles), constraints from Fermi-LAT									
	▼	V	▼	/ cm	3 000		0.0(/			
Benchmark	$\Omega 2h^2$	σ_{pA_S}/pb	σ_{nA_S}/pb	$\sigma_{A_S A_S \to XX} / \frac{cm}{s}$	- <u>BR(</u>	$h_3 \rightarrow A_S A_S$)	$BR(h_2 -$	$\rightarrow A_S A_S$)	$BR(h_1 \rightarrow A)$	A_SA_S)
DM55 _{w95}	0.11	4.21×10^{-12}	4.08×10^{-12}	1.98×10^{-28}	3	$.81 \times 10^{-9}$	0.0	199	-	
DM156 _{w95}	1.61×10^{-4}	3.903×10^{-11}	4.160×10^{-11}	3.875×10^{-29}		0.69	· ·	-	-	
DM1000 _{w95}	0.111	3.323×10^{-11}	3.369×10^{-11}	2.045×10^{-26}		0.0359	· ·	-	-	
DM70	0.113	8.938×10^{-16}	2.651×10^{-13}	2.13×10^{-28}		0.99934	·	-	1.80×10^{-1}) ⁻⁴
DM400	0.106	4.960×10^{-11}	5.101×10^{-11}	3.67×10^{-26}		0.82203	· ·	-	-	
DM1000	0.117	$8.263 imes 10^{-11}$	$8.464 imes 10^{-11}$	$2.018 imes 10^{-26}$		0.005	.	-	-	

Collider Phenomenology, HL-LHC

0.007

_

 $BBH(h_3 \rightarrow A_S A_S)$

Process	Productio	n cross-section	(fb) at $\sqrt{s} = 14 \text{ TeV}$		<i>a</i>
	$\mathrm{DM55}_{\mathrm{w9}}$	$_{5} \mid \mathrm{DM156_{w95}}$	DM70		g ill s
$GGF(h_2 \to A_S A_S)$	★ 533.9	-	\star 19.29×10 ³		f
$GGF(h_3 \to A_S A_S)$	-	0.015	-		T'×
$\operatorname{VBF}(h_2 \to A_S A_S)$	54.33	-	\star 2.72×10 ³		g ell
$\operatorname{VBF}(h_3 \to A_S A_S)$	-	0.134	0.0022		
$BBH ((b\bar{b}h_2 \to A_S A_S))$)) 21.6	-	0.137		
$BBH ((b\bar{b}h_3 \to A_S A_S))$)) -	★ 47.24	-		
Process	Production	cross-section ((fb) at $\sqrt{s} = 14$ TeV] \	-
	DM400 I	DM1000	$\mathrm{DM1000_{w95}}$		<i>q</i> →
$GGF(h_3 \to A_S A_S)$	0.013 6	$.35 \times 10^{-7}$	4.5×10^{-6}	1 \	V. L
$VBF(h_3 \rightarrow A_s A_s)$	0.0008	-	-		ד, ע

Collider Phenomenology, HL-LHC

Process	Production cross-section (fb) at $\sqrt{s} = 14$ Te								
	DM400	DM1000	$\mathrm{DM1000_{w95}}$						
$GGF(h_3 \to A_S A_S)$	0.013	6.35×10^{-7}	4.5×10^{-6}						
$\operatorname{VBF}(h_3 \to A_S A_S)$	0.0008	-	-						
$BBH(h_3 \to A_S A_S)$	0.007	-	-						

Benchmark	Significance
$\mathrm{DM55_{w95}}$	0.30σ
DM70	0.55σ

Benchmark	Significance
$\mathrm{DM156_{w95}}$	1.95σ

GGF

BBH

18

Collider Phenomenology, e⁺e⁻ Colliders

Z+MET

Benchmark	Production cross-section (fb)							
	at $\sqrt{s} = 250 \text{ GeV}$	at $\sqrt{s} = 500 \text{ GeV}$	at $\sqrt{s} = 1$ TeV					
$\mathrm{DM55_{w95}}$	4.42	1.1	0.24					
DM70	0.33	0.15	0.035					
$\nu \bar{\nu} Z$ background	503	491	950					

Benchmark	\sqrt{s}	Cut	Significance
$\mathrm{DM55_{w95}}$	$250~{\rm GeV}$	$M > 100 { m ~GeV}$	$11\sigma \ (1ab^{-1})$
DM70	$250 { m GeV}$	$M > 130 { m ~GeV}$	$3\sigma~(3ab^{-1})$
$\mathrm{DM55_{w95}}$	$500~{\rm GeV}$	M > 100 GeV and $M < 150 GeV$	$3.6\sigma \ (1ab^{-1})$
DM70	$500 { m GeV}$	M > 140 GeV and M < 190 GeV	$1.5\sigma \ (3ab^{-1})$
$\mathrm{DM55_{w95}}$	$1 { m TeV}$	M > 120 GeV and M < 250 GeV	$2.4\sigma \ (3ab^{-1})$
DM70	$1 { m TeV}$	M > 120 GeV and M < 250 GeV	$0.36\sigma \ (3ab^{-1})$

Collider Phenomenology, **µ**⁺**µ**⁻ Colliders

LALIMET	Benchmark	Production cr	oss-section (fb)							
		at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10$ TeV	-			Benchmark	ς	Cut	Significance
	$\rm DM156_{w95}$	0.48	0.063	1			$\rm DM156_{w9}$	5 100 GeV <	$m_{bb} < 500 \mathrm{GeV}$	$6.3\sigma (3ab^{-1})$
	$b\bar{b}\nu\nu$ background	758	1.3]						
	$t\bar{t}$ background	20	1.7]						
						Benchmark	-	Cut	Sigr	ufficance
SALMET	Benchmark	Production cross-s	oduction cross-section (fb)at $\sqrt{s} = 1$			Deneminari	`	Cut	Digi	inicance
Y+ME1	$\mathrm{DM156_{w95}}$		0.23			$DM156_{w9}$	5 690 GeV	< M < 710 Ge	$eV \mid 3\sigma \ (3ab^{-1})$	$, 5.3\sigma (10ab^{-1})$
	$\nu\nu\gamma$ background		2.45							
	Ponchmark	Production cross	(fb) at \sqrt{a}	- 10 ToV				Benchmark	Cut	Significance
++_N/ET	Dencimark	F TOQUCTION CLOSE	-section (ib) at \sqrt{s} =	= 10 1ev					040	
	DM1000 _{w95}		0.027					$\mathrm{DM1000_{w95}}$	$m_{bb} < 2 \text{ TeV}$	$ 2.9\sigma (10ab^{-1}) $
	$t\bar{t}$ +MET background	1	1.66					-		·

Collider Phenomenology, **µ**⁺**µ**⁻ Colliders

		Benchmark	Production cr	oss-section (fb)			,				
			at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10$ TeV	-			Benchmark	ς	Cut	Significance
		$\rm DM156_{w95}$	0.48	0.063	1			$\mathrm{DM156}_{\mathrm{w9}}$	5 100 GeV <	$m_{bb} < 500 \mathrm{GeV}$	6.3 σ (3 ab^{-1})
		$b\bar{b}\nu\nu$ background	758	1.3]		·				·
		$t\bar{t}$ background	20	1.7]						
							Donobroonl	-	Cent	Ciana	:Comes
	NUMBER	Benchmark	Production cross-s	roduction cross-section (fb)at $\sqrt{s} = 1$ TeV			Denchmark	<u> </u>	Cut	Sign	Incance
	Y+MEI	$\mathrm{DM156_{w95}}$		0.23			$DM156_{w9}$	5 690 GeV	< M < 710 Ge	$eV \mid 3\sigma \ (3ab^{-1}),$	$5.3\sigma \ (10ab^{-1})$
		$\nu\nu\gamma$ background		2.45							
ſ		Ponohmanlr	Production energy	contion (fb) at /a -	- 10 ToV	Г			Benchmark	Cut	Significance
	+++MET	Dencimark	FIGURETION CLOSS	-section (ib) at \sqrt{s} =	= 10 1ev	4				- Cut	
		$\mathrm{DM1000_{w95}}$		0.027					$\mathrm{DM1000_{w95}}$	$\mid m_{bb} < 2 \text{ TeV} \mid$	$2.9\sigma (10ab^{-1})$
		$t\bar{t}$ +MET background	1	1.66							

*results can be improved with polarized beams (higher signal rates, better background suppression)

Collider Phenomenology, Challenging Scenarios

DM400

Final state	Production cross-section (fb) at muon collider						
	at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10 \text{ TeV}$					
$\gamma + \text{MET}$	5.3×10^{-7}	4.9×10^{-8}					
Z+MET	1.1×10^{-5}	1.5×10^{-6}					
$b\bar{b}$ +MET	2.7×10^{-3}	4.5×10^{-3}					
$t\bar{t}$ +MET	3.7×10^{-3}	8.9×10^{-3}					

DM1000

Final state	Production cross-section (fb) at muon collide		
	at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10 \text{ TeV}$	
$\gamma + \text{MET}$	3.5×10^{-9}	1.3×10^{-10}	
Z+MET	4.4×10^{-8}	2.2×10^{-6}	
$b\bar{b}$ +MET	3.7×10^{-8}	2.0×10^{-5}	
$t\bar{t}$ +MET	7.8×10^{-9}	3.7×10^{-5}	

Collider Phenomenology, Challenging Scenarios

	· · ·		
D	4400		
	Final state	Production cross	s-section (fb) at muon collider
		at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10 \text{ TeV}$
	$\gamma + MET$	5.3×10^{-7}	4.9×10^{-8}
	Z + MET	1.1×10^{-5}	1.5×10^{-6}
	$b\overline{b}$ +MET	2.7×10^{-3}	4.5×10^{-3}
	$t\bar{t}+MET$	3.7×10^{-3}	8.9×10^{-3}

DN	11000		
	Final state	Production cross	s-section (fb) at muon collider
		at $\sqrt{s} = 3$ TeV	at $\sqrt{s} = 10 \text{ TeV}$
	$\gamma + MET$	3.5×10^{-9}	1.3×10^{-10}
	Z + MET	4.4×10^{-8}	2.2×10^{-6}
	$b\bar{b}$ +MET	3.7×10^{-8}	2.0×10^{-5}
	$t\bar{t}$ +MET	7.8×10^{-9}	3.7×10^{-5}

					₹ LHC	M
D					Zn	77
Process	Productio	or	. cross-sect	ion (fb) at $$	s = 14 TeV	
	DM400			DM1000		
GGF	0.016			1.27×10^{-4}		
VBF	0.001			4.7×10^{-6}		
BBH	0.008			1.96×10^{-6}		
					FCC-	hh¥
Process	Productio	n	cross-secti	on (fb) at \sqrt{s}	= 100 TeV	
	DM400			DM1000		
GGF	1.456			0.117		
VBF	0.039			1.182		
BBH	0.264			0.029		

~~~







# Conclusion

- DM search at future colliders:
   6 BPs (light, intermediate, heavy)
  - satisfying all DM constraints
- Best prospects for intermediate and heavy BPs at µ<sup>+</sup>µ<sup>-</sup> colliders
   potential improvement with beam polarization
- Best prospects for light BPs at e<sup>+</sup>e<sup>-</sup> colliders
- Challenging scenarios could be probed at FCC-hh





# Conclusion

- DM search at future colliders:
   6 BPs (light, intermediate, heavy)
  - satisfying all DM constraints
- Best prospects for intermediate and heavy BPs at µ<sup>+</sup>µ<sup>-</sup> colliders
   potential improvement with beam polarization
- Best prospects for light BPs at e<sup>+</sup>e<sup>-</sup> colliders
- Challenging scenarios could be probed at FCC-hh

Thank you!

| $m_{h_1}$        | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$  | $\chi^2$ |
|------------------|----------------------------|----------------------------|-----------------------------|----------------|----------|
| $95.4{ m GeV}$   | $125.09{\rm GeV}$          | $650{ m GeV}$              | $800{ m GeV}$               | $800{\rm GeV}$ | 1.26     |
| $m_{A_S}$        | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta          |          |
| $55.596{ m GeV}$ | 0.0020912                  | 0.00074611                 | -0.025735                   | 2              |          |
| $v_S$            | $	ilde{\mu}$               | $\alpha_1$                 | $lpha_2$                    | $lpha_3$       |          |
| $300{ m GeV}$    | $650{ m GeV}$              | -1.932                     | 1.272                       | 1.484          |          |

Table 23: The benchmark point  $DM55_{w95}$  in the mass basis.

| $m_{h_1}$         | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$ | $\chi^2$ |
|-------------------|----------------------------|----------------------------|-----------------------------|---------------|----------|
| $95.4{ m GeV}$    | $125.09{\rm GeV}$          | $700{ m GeV}$              | $700{ m GeV}$               | $700{ m GeV}$ | 0.422    |
| $m_{A_S}$         | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta         |          |
| $156{ m GeV}$     | 12.753                     | -0.31351                   | -2.6747                     | 6.6           |          |
| $v_S$             | $	ilde{\mu}$               | $\alpha_1$                 | $\alpha_2$                  | $lpha_3$      |          |
| $239.86{\rm GeV}$ | $700{ m GeV}$              | 1.4661                     | 1.1920                      | -1.5989       |          |

Table 24: The benchmark point  $\rm DM156_{w95}$  in the mass basis.

| $m_{h_1}$       | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$  | $\chi^2$ |
|-----------------|----------------------------|----------------------------|-----------------------------|----------------|----------|
| $95.4{ m GeV}$  | $125.09{\rm GeV}$          | $2950{ m GeV}$             | $2950{ m GeV}$              | $2950{ m GeV}$ | 2.13     |
| $m_{A_S}$       | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta          |          |
| $1000{ m GeV}$  | 21.231                     | 0                          | -1.4153                     | 5              |          |
| $v_S$           | $	ilde{\mu}$               | $\alpha_1$                 | $\alpha_2$                  | $\alpha_3$     |          |
| $10005{ m GeV}$ | $2949.29{\rm GeV}$         | -1.769                     | 1.250                       | 1.569          |          |

Table 25: The benchmark point  $DM1000_{w95}$  in the mass basis.

| $m_{h_1}$         | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$ |
|-------------------|----------------------------|----------------------------|-----------------------------|---------------|
| $800{ m GeV}$     | $125.09{\rm GeV}$          | $150{ m GeV}$              | $800{ m GeV}$               | $800{ m GeV}$ |
| $m_{A_S}$         | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta         |
| $70{ m GeV}$      | -0.10783                   | 0.063127                   | -0.47818                    | 1.3728        |
| $v_S$             | $	ilde{\mu}$               | $\alpha_1$                 | $\alpha_2$                  | $\alpha_3$    |
| $219.05{\rm GeV}$ | $751.54{\rm GeV}$          | -0.60016                   | 0.042445                    | -0.054807     |

Table 26: The benchmark point DM70 in the mass basis.

| $m_{h_1}$        | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$ |
|------------------|----------------------------|----------------------------|-----------------------------|---------------|
| $800{ m GeV}$    | $125.09{\rm GeV}$          | $900{ m GeV}$              | $800{ m GeV}$               | $800{ m GeV}$ |
| $m_{A_S}$        | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta         |
| $400{ m GeV}$    | 0.077784                   | 0.036923                   | -0.42725                    | 2.1309        |
| $v_S$            | $	ilde{\mu}$               | $lpha_1$                   | $lpha_2$                    | $lpha_3$      |
| $587.17{ m GeV}$ | $755.39{\rm GeV}$          | -0.41245                   | -0.0086501                  | -0.0055431    |

Table 27: The benchmark point DM400 in the mass basis.

| $m_{h_1}$          | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$ |
|--------------------|----------------------------|----------------------------|-----------------------------|---------------|
| $800{ m GeV}$      | $125.09{\rm GeV}$          | $2900{\rm GeV}$            | $800{ m GeV}$               | $800{ m GeV}$ |
| $m_{A_S}$          | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | an eta        |
| $1000{ m GeV}$     | 0.32873                    | 0.21320                    | -0.41541                    | 1.3414        |
| $v_S$              | $	ilde{\mu}$               | $lpha_1$                   | $lpha_2$                    | $lpha_3$      |
| $\fbox{2271.3GeV}$ | $768.14{\rm GeV}$          | -0.54917                   | 0.036530                    | -0.056095     |

Table 28: The benchmark point DM1000 in the mass basis.30

| $m_{h_1}$         | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$  | $\chi^2$ |
|-------------------|----------------------------|----------------------------|-----------------------------|----------------|----------|
| $95.4{ m GeV}$    | $125.09{\rm GeV}$          | $650{ m GeV}$              | $800{ m GeV}$               | $800{\rm GeV}$ | 1.26     |
| $m_{A_S}$         | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta          |          |
| $55.596{\rm GeV}$ | 0.0020912                  | 0.00074611                 | -0.025735                   | 2              |          |
| $v_S$             | $	ilde{\mu}$               | $lpha_1$                   | $lpha_2$                    | $lpha_3$       |          |
| $300{ m GeV}$     | $650{ m GeV}$              | -1.932                     | 1.272                       | 1.484          |          |

Table 23: The benchmark point  $DM55_{w95}$  in the mass basis.

| $m_{h_1}$         | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$ | $\chi^2$ |
|-------------------|----------------------------|----------------------------|-----------------------------|---------------|----------|
| $95.4{ m GeV}$    | $125.09{\rm GeV}$          | $700{ m GeV}$              | $700{ m GeV}$               | $700{ m GeV}$ | 0.422    |
| $m_{A_S}$         | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta         |          |
| $156{ m GeV}$     | 12.753                     | -0.31351                   | -2.6747                     | 6.6           |          |
| $v_S$             | $	ilde{\mu}$               | $\alpha_1$                 | $\alpha_2$                  | $lpha_3$      |          |
| $239.86{\rm GeV}$ | $700{ m GeV}$              | 1.4661                     | 1.1920                      | -1.5989       |          |

Table 24: The benchmark point  $DM156_{w95}$  in the mass basis.

| $m_{h_1}$       | $m_{h_2}$                  | $m_{h_3}$                  | $m_A$                       | $m_{H^{\pm}}$   | $\chi^2$ |
|-----------------|----------------------------|----------------------------|-----------------------------|-----------------|----------|
| $95.4{ m GeV}$  | $125.09{\rm GeV}$          | $2950{ m GeV}$             | $2950{\rm GeV}$             | $2950{\rm GeV}$ | 2.13     |
| $m_{A_S}$       | $\lambda_1' - 2\lambda_4'$ | $\lambda_2' - 2\lambda_5'$ | $\lambda_1'' - \lambda_3''$ | aneta           |          |
| $1000{ m GeV}$  | 21.231                     | 0                          | -1.4153                     | 5               |          |
| $v_S$           | $	ilde{\mu}$               | $\alpha_1$                 | $\alpha_2$                  | $\alpha_3$      |          |
| $10005{ m GeV}$ | $2949.29{\rm GeV}$         | -1.769                     | 1.250                       | 1.569           |          |

#### Benchmarks with a 95 GeV scalar

For the benchmarks, with a scalar at 95 GeV as a part of the mass spectrum, we have ensured that its signal strengths satisfy the following.

The lightest scalar  $h_1$  has a mass of 95.4 GeV and plays the role of a scalar particle responsible for the observed signal strengths, which are for LEP in the  $b\bar{b}$  mode (~  $2\sigma$ ) [5] and LHC in the  $\gamma\gamma$  mode (~  $3\sigma$ ) [6, 7]:

$$\mu_{\rm LEP}^{b\bar{b}} = 0.117^{+0.057}_{-0.057}, \qquad \mu_{\rm LHC-combined}^{\gamma\gamma} = 0.24^{+0.09}_{-0.08}. \tag{4.1}$$

We calculate the combined  $\chi^2 = \chi^2_{b\bar{b}} + \chi^2_{\gamma\gamma}$  values according to Ref. [8] and [9] and provide them in the Appendix, Table 23 - 25.

Table 25: The benchmark point  $DM1000_{w95}$  in the mass basis.

# Backup, Collider Pheno, HL-LHC

$$M^2 = (p_{in} - p_{out})^2$$

$$\sigma^{w_i} = \frac{\sigma^{4f} + w_i \sigma^{5f}}{1 + w_i}$$

 $w_i = \ln(\frac{m_{h_i}}{m_b}) - 2$ 

#### **Gluon Fusion**

We consider the final state mono-jet + MET from the gluon fusion production channel. For the collider analyses, we use the following cuts [70]:

- C1: The final state consists of up to four jets with  $p_T > 30$  GeV and  $|\eta| < 2.8$ .
- C2: We demand a large  $\not\!\!\!E_T > 250$  GeV.
- C3: The hardest leading jet has  $p_T > 250$  GeV with  $|\eta| < 2.4$ .
- C4: We demand  $\Delta \Phi(j, \not\!\!\!E_T) > 0.4$  for all jets and  $\Delta \Phi(j, \not\!\!\!E_T) > 0.6$  for the leading jet.
- C5: A lepton-veto is imposed for electrons with  $p_T > 20$  GeV and  $|\eta| < 2.47$  and muons with  $p_T > 10$  GeV and  $|\eta| < 2.5$ .

#### Vector Boson Fusion

We consider the final state two forward-jets + MET from the vector boson fusion production channel. For the collider analyses, we use the following cuts [72]:

- **D1**: The final state consists of at least two jets with  $p_T(j_1) > 80$  and  $p_T(j_2) > 40$  GeV and  $\Delta \Phi(j_i, \not\!\!\!E_T) > 0.5$ .
- **D2**: We demand  $\eta(j_1j_2) < 0$  and  $\Delta \Phi j_1j_2 < 1.5$ .
- **D3**: We demand  $|\Delta \eta|_{jj} > 3.0$ .
- D4: The invariant mass of the two forward jets is required to be large, i.e,  $M_{jj} > 600$  GeV.
- D6: Furthermore, a lepton veto is imposed for electrons with  $p_T > 20$  GeV or muons with  $p_T > 10$  GeV.

#### $b\bar{b}$ Higgs associated production

- E1: The final state consists of two b jets and no photons or leptons. We demand  $\Delta R(b_1, b_2) > 0.4$ ,  $p_T(b_1) > 150$  GeV and  $p_T(b_2) > 100$  GeV.
- E3: We demand the invariant mass of the  $b\bar{b}$  pair (as seen in Fig. 5) is outside the Z (76 GeV <  $M(b\bar{b})$  < 105 GeV) or SM Higgs mass window (115 GeV <  $M(b\bar{b})$  < 135 GeV) to remove background contributions from on-shell Z or Higgs bosons.
- E4: Further, we demand  $M(b\bar{b}) > 200$  GeV to reduce SM background contributions.

#### Backup, Collider Phenomenology, HL-LHC

| Process                                   | Production cross-section (fb) at $\sqrt{s} = 14$ TeV |               |                       |  |
|-------------------------------------------|------------------------------------------------------|---------------|-----------------------|--|
|                                           | $\rm DM55_{w95}$                                     | $DM156_{w95}$ | DM70                  |  |
| $GGF(h_2 \rightarrow A_S A_S)$            | 533.9                                                | -             | $19.29 \times 10^{3}$ |  |
| $GGF(h_3 \to A_S A_S)$                    | -                                                    | 0.015         | -                     |  |
| $VBF(h_2 \rightarrow A_S A_S)$            | 54.33                                                | -             | $2.72 \times 10^{3}$  |  |
| $VBF(h_3 \rightarrow A_S A_S)$            | -                                                    | 0.134         | 0.0022                |  |
| BBH $((b\bar{b}h_2 \rightarrow A_S A_S))$ | 21.6                                                 | -             | 0.137                 |  |
| BBH $((b\bar{b}h_3 \rightarrow A_SA_S))$  | -                                                    | 47.24         | -                     |  |

**Table 4:** The production cross-sections at leading order (LO) of the relevant processes at  $\sqrt{s} = 14$  TeV at LHC. All cross-sections below 10<sup>-6</sup> fb are denoted by '-'. For  $b\bar{b}h_i$ , with i = 2, 3, we use the Santander matched cross-section as defined in the text.

| Process                        | Production cross-section (fb) at $\sqrt{s} = 100 \text{ TeV}$ |                      |                      |
|--------------------------------|---------------------------------------------------------------|----------------------|----------------------|
|                                | $\rm DM55_{w95}$                                              | DM156 <sub>w95</sub> | DM70                 |
| $GGF(h_2 \to A_S A_S)$         | $10.1 \times 10^{5}$                                          | -                    | $4.09 \times 10^{5}$ |
| $GGF(h_3 \rightarrow A_S A_S)$ | -                                                             | 1.596                | -                    |
| $VBF(h_2 \rightarrow A_S A_S)$ | $5.97 \times 10^{2}$                                          | -                    | 81.87                |
| $VBF(h_3 \rightarrow A_S A_S)$ | -                                                             | 3.12                 | -                    |
| $BBH(h_2 \to A_S A_S)$         | $6.43 \times 10^{2}$                                          | -                    | $17.2 \times 10^{3}$ |
| $BBH(h_3 \rightarrow A_S A_S)$ | -                                                             | 5.00                 | -                    |

Table 10: The production cross-sections at leading order (LO) of the relevant processes for the benchmarks DM55<sub>w95</sub>, DM156<sub>w95</sub> and DM70 at  $\sqrt{s} = 100$  TeV. For BBH we use the Santander matched cross-section as defined in the text.

| Process                        | Production cross-section (fb) at $\sqrt{s} = 14$ TeV |                       |                      |
|--------------------------------|------------------------------------------------------|-----------------------|----------------------|
|                                | DM400                                                | DM1000                | $\rm DM1000_{w95}$   |
| $GGF(h_3 \rightarrow A_S A_S)$ | 0.013                                                | $6.35 \times 10^{-7}$ | $4.5 \times 10^{-6}$ |
| $VBF(h_3 \rightarrow A_S A_S)$ | 0.0008                                               | -                     | -                    |
| $BBH(h_3 \rightarrow A_S A_S)$ | 0.007                                                | -                     | -                    |

**Table 5:** The production cross-sections at leading order (LO) of the relevant processes for the benchmarks **DM400**, **DM1000** and **DM1000**w95 at  $\sqrt{s} = 14$  TeV at LHC. For  $b\bar{b}h_3$  we use the Santander matched cross-section as defined in the text.

| Benchmark              | Cross-section after cuts (fb) |
|------------------------|-------------------------------|
| $\rm DM156_{w95}$      | 0.357                         |
| SM Background          |                               |
| $b\bar{b}Z$            | 18.3                          |
| $b\bar{b}\nu\bar{\nu}$ | 13.46                         |
| $t\bar{t}$             | 66.46                         |
| Z + j                  | 2.04                          |
| hZ                     | 0.012                         |
| Total Background       | 100.27                        |

Table 8: The cross-sections for the signal and backgrounds after applying the cuts E1-E4 as discussed in the text for signal-background distinction for BBH for HL-LHC at an integrated luminosity of 3000 fb<sup>-1</sup>.



| Benchmark        | Significance |
|------------------|--------------|
| $\rm DM55_{w95}$ | $0.30\sigma$ |
| <b>DM70</b>      | $0.55\sigma$ |

**Table 6**: The signal significance for the signal benchmarks from GGF for HL-LHC at an integrated luminosity of 3000  $fb^{-1}$ .

| Benchmark | Significance |  |
|-----------|--------------|--|
| DM70      | $1.94\sigma$ |  |

**Table 7**: The signal significance for the signal benchmarks from VBF for HL-LHC at an integrated luminosity of  $3000 \text{ fb}^{-1}$ .

| Benchmark         | Significance |
|-------------------|--------------|
| $\rm DM156_{w95}$ | $1.95\sigma$ |

Table 9: The signal significance for the signal from BBH for HL-LHC at an integrated luminosity of 3000 fb<sup>-1</sup>.

# Backup, Collider Phenomenology, e<sup>+</sup>e<sup>-</sup> Colliders

| Benchmark                    | Production cross-section (fb)   |                                 |                       |
|------------------------------|---------------------------------|---------------------------------|-----------------------|
|                              | at $\sqrt{s} = 250 \text{ GeV}$ | at $\sqrt{s} = 500 \text{ GeV}$ | at $\sqrt{s} = 1$ TeV |
| $\mathrm{DM55_{w95}}$        | 4.42                            | 1.1                             | 0.24                  |
| DM70                         | 0.33                            | 0.15                            | 0.035                 |
| $\nu \bar{\nu} Z$ background | 503                             | 491                             | 950                   |

Table 11: The Production cross-section for signal (for DM55<sub>w95</sub> and DM70) and background  $(\nu \bar{\nu} Z)$  for Z+MET final state at  $\sqrt{s} = 250$  GeV, 500 GeV and 1 TeV  $e^+e^-$  collider.

| Benchmark                      | $\sqrt{s}$     | Cut                             | Significance              |
|--------------------------------|----------------|---------------------------------|---------------------------|
| $\mathrm{DM55_{w95}}$          | $250 { m GeV}$ | $M > 100 { m ~GeV}$             | $11\sigma \ (1ab^{-1})$   |
| DM70                           | $250 { m GeV}$ | $M > 130 { m ~GeV}$             | $3\sigma$ $(3ab^{-1})$    |
| $\mathrm{DM55_{w95}}$          | $500 { m GeV}$ | M > 100  GeV and $M < 150  GeV$ | $3.6\sigma \ (1ab^{-1})$  |
| DM70                           | $500 { m GeV}$ | M > 140  GeV  and  M < 190  GeV | $1.5\sigma \ (3ab^{-1})$  |
| $\mathrm{DM55}_{\mathrm{w95}}$ | 1 TeV          | M > 120  GeV and $M < 250  GeV$ | $2.4\sigma \ (3ab^{-1})$  |
| DM70                           | 1 TeV          | M > 120  GeV and $M < 250  GeV$ | $0.36\sigma \ (3ab^{-1})$ |

Table 12: The Signal significance (for  $DM55_{w95}$  and DM70) for Z+MET final state at  $\sqrt{s}=250$  GeV,  $\sqrt{s}=500$  GeV and  $\sqrt{s}=1$  TeV  $e^+e^-$  collider.









(c) **DM156**<sub>w95</sub>

# Backup, Collider Phenomenology, $e^+e^-$ Colliders $e^+ \rightarrow e^-$

| Benchmark                    | Production cross-section (fb)   |                                 |                       |
|------------------------------|---------------------------------|---------------------------------|-----------------------|
|                              | at $\sqrt{s} = 250 \text{ GeV}$ | at $\sqrt{s} = 500 \text{ GeV}$ | at $\sqrt{s} = 1$ TeV |
| $\mathrm{DM55_{w95}}$        | 4.42                            | 1.1                             | 0.24                  |
| DM70                         | 0.33                            | 0.15                            | 0.035                 |
| $\nu \bar{\nu} Z$ background | 503                             | 491                             | 950                   |

Table 11: The Production cross-section for signal (for DM55<sub>w95</sub> and DM70) and background ( $\nu \bar{\nu} Z$ ) for Z+MET final state at  $\sqrt{s} = 250$  GeV, 500 GeV and 1 TeV  $e^+e^-$  collider.



Figure 7: Distribution of missing mass M for signal (for DM55<sub>w95</sub> and DM70) and background ( $\nu \bar{\nu} Z$ ) for Z+MET final state at  $\sqrt{s}=250$  GeV (top left),  $\sqrt{s}=500$  GeV (top right) and  $\sqrt{s}=1$  TeV (bottom)  $e^+e^-$  collider.

# Backup, Collider Phenomenology, $\mu^+\mu^-$ Colliders $\mu^+ \rightarrow +\mu^-$

| Benchmark                   | Production cross-section (fb) |                                |  |
|-----------------------------|-------------------------------|--------------------------------|--|
|                             | at $\sqrt{s} = 3$ TeV         | at $\sqrt{s} = 10 \text{ TeV}$ |  |
| $\rm DM156_{w95}$           | 0.48                          | 0.063                          |  |
| $b\bar{b}\nu\nu$ background | 758                           | 1.3                            |  |
| $t\bar{t}$ background       | 20                            | 1.7                            |  |

**Table 13**: The Production cross-section for signal (for DM156<sub>w95</sub>) and background  $(b\bar{b}\nu\nu$  and  $t\bar{t}$ ) for  $b\bar{b}$ +MET final state at  $\sqrt{s} = 3$  TeV and 10 TeV muon collider.

| Benchmark         | Cut                                          | Significance           |
|-------------------|----------------------------------------------|------------------------|
| $\rm DM156_{w95}$ | $100 \text{ GeV} < m_{bb} < 500 \text{ GeV}$ | $6.3\sigma (3ab^{-1})$ |

Table 14: The Signal significance and corresponding cuts (for  $DM156_{w95}$ ) for  $b\bar{b}$ +MET final state at  $\sqrt{s} = 3$  TeV muon collider.

| Benchmark                 | Production cross-section (fb)at $\sqrt{s} = 1$ TeV |
|---------------------------|----------------------------------------------------|
| $\rm DM156_{w95}$         | 0.23                                               |
| $\nu\nu\gamma$ background | 2.45                                               |

Table 15: The Production cross-section for signal (for DM156<sub>w95</sub>) and background ( $\nu\nu\gamma$ ) for  $\gamma$ +MET final state at  $\sqrt{s} = 1$  TeV muon collider.

| Benchmark         | Cut                                 | Significance                                      |
|-------------------|-------------------------------------|---------------------------------------------------|
| $\rm DM156_{w95}$ | 690 ${\rm GeV} < M < 710~{\rm GeV}$ | $3\sigma \ (3ab^{-1}), \ 5.3\sigma \ (10ab^{-1})$ |

Table 16: The Signal significance and corresponding cuts (for DM156<sub>w95</sub>) for  $\gamma$ +MET final state at  $\sqrt{s} = 1$  TeV muon collider.

| Benchmark                  | Production cross-section (fb) at $\sqrt{s} = 10$ TeV<br>0.027 |  |
|----------------------------|---------------------------------------------------------------|--|
| $\rm DM1000_{w95}$         |                                                               |  |
| $t\bar{t}$ +MET background | 1.66                                                          |  |

**Table 17**: The Production cross-section for signal  $(\mathbf{DM1000_{w95}})$  and background  $(t\bar{t}+MET)$  for  $t\bar{t}+MET$  final state at  $\sqrt{s} = 10$  TeV muon collider.

| Benchmark          | Cut                      | Significance            |
|--------------------|--------------------------|-------------------------|
| $\rm DM1000_{w95}$ | $m_{bb} < 2 \text{ TeV}$ | $2.9\sigma (10ab^{-1})$ |

Table 18: The Signal significance and corresponding cuts (for DM1000<sub>w95</sub>) for  $t\bar{t}$ +MET final state at  $\sqrt{s} = 10$  TeV muon collider.





Figure 8: Variation of the production cross-section against  $\sqrt{s}$  for the final states  $A_s A_s \gamma$ ,  $Z A_s A_s$ ,  $b \bar{b} A_s A_s$ , and  $t \bar{t} A_s A_s$  at a muon collider, computed using WHIZARD [67] for different benchmark points.

$$0 = \frac{\partial V}{\partial \Phi_1} \Big|_{\substack{\Phi_1 = \langle \Phi_1 \rangle \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_{11}^2 v_1 - m_{12}^2 v_2 + \frac{\lambda_1}{2} v_1^3 + \frac{\lambda_{345}}{2} v_1 v_2^2 + (\frac{\lambda_1'}{2} v_1 + \lambda_4' v_1) v_S^2]$$

$$(A.1a)$$

$$0 = \frac{\partial V}{\partial \Phi_2} \Big|_{\substack{\Phi_1 = \langle \Phi_1 \rangle \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_{22}^2 v_2 - m_{12}^2 v_1 + \frac{\lambda_2}{2} v_2^3 + \frac{\lambda_{345}}{2} v_1^2 v_2 + (\frac{\lambda_2'}{2} v_2 + \lambda_5' v_2) v_S^2]$$

$$0 = \frac{\partial V}{\partial S}\Big|_{\substack{\Phi_1 = \langle \Phi_1 \rangle \\ \Phi_2 = \langle \Phi_2 \rangle \\ S = \langle S \rangle}} = \frac{1}{\sqrt{2}} [m_S^2 v_S + m_S'^2 v_S + \frac{\lambda_1''}{12} v_S^3 + \frac{\lambda_2''}{3} v_S^3 + \frac{\lambda_3''}{4} v_S^3 + \frac{v_S}{2} (\lambda_1' v_1^2 + \lambda_2' v_2^2) + v_S (\lambda_4' v_1^2 + \lambda_5' v_2^2)].$$
(A.1b)  
(A.1b)  
(A.1b)

$$R = \begin{pmatrix} c_{\alpha_1}c_{\alpha_2} & s_{\alpha_1}c_{\alpha_2} & s_{\alpha_2} \\ -s_{\alpha_1}c_{\alpha_3} - c_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_1}c_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}s_{\alpha_3} & c_{\alpha_2}s_{\alpha_3} \\ s_{\alpha_1}s_{\alpha_3} - c_{\alpha_1}s_{\alpha_2}c_{\alpha_3} & -c_{\alpha_1}s_{\alpha_3} - s_{\alpha_1}s_{\alpha_2}c_{\alpha_3} & c_{\alpha_2}c_{\alpha_3} \end{pmatrix}$$

$$\begin{split} m_{12}^2 &= \tilde{\mu}^2 \cdot \sin\beta \cos\beta \\ \lambda_1 &= \frac{1}{v^2 \cos^2\beta} (\Sigma_{i=1}^3 m_i^2 R_{i1}^2 - \tilde{\mu}^2 \sin^2\beta), \\ \lambda_2 &= \frac{1}{v^2 \sin^2\beta} (\Sigma_{i=1}^3 m_i^2 R_{i2}^2 - \tilde{\mu}^2 \cos^2\beta), \\ \lambda_3 &= \frac{1}{v^2} (\frac{1}{\sin\beta \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i1} R_{i2} - \tilde{\mu}^2 + 2m_{H^{\pm}}^2), \\ \lambda_4 &= \frac{1}{v^2} (m_A^2 + \tilde{\mu}^2 - 2m_{H^{\pm}}^2), \\ \lambda_5 &= \frac{1}{v^2} (-m_A^2 + \tilde{\mu}^2), \\ \lambda_1' &= \frac{1}{2} (\frac{1}{vv_S \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i1} R_{i3} + \lambda_{14}'), \\ \lambda_2' &= \frac{1}{2} (\frac{1}{vv_S \sin\beta} \Sigma_{i=1}^3 m_i^2 R_{i2} R_{i3} + \lambda_{25}'), \\ \lambda_4' &= \frac{1}{4} (\frac{1}{vv_S \cos\beta} \Sigma_{i=1}^3 m_i^2 R_{i2} R_{i3} - \lambda_{14}'), \\ \lambda_5' &= \frac{1}{4} (\frac{1}{vv_S \sin\beta} \Sigma_{i=1}^3 m_i^2 R_{i2} R_{i3} - \lambda_{25}'), \\ \lambda_1'' &= \frac{3}{4v_S^2} (\Sigma_{i=1}^3 m_i^2 R_{i3}^2 + \frac{v_S^2}{2} \lambda_{13}'), \\ \lambda_3'' &= \frac{3}{4v_S^2} (\Sigma_{i=1}^3 m_i^2 R_{i3}^2 + \frac{5v_S^2}{6} \lambda_{13}'), \\ m_S'^2 &= -(\frac{1}{2} m_{A_S}^2 + \frac{1}{4} \Sigma_{i=1}^3 m_i^2 (R_{i3}^2 + R_{i1} R_{i3} \frac{v \cos\beta}{v_S} + R_{i2} R_{i3} \frac{v \sin\beta}{v_S}) \\ &- \frac{v^2}{4} (\lambda_{14}' \cos^2\beta + \lambda_{25}' \sin^2\beta) + \frac{v_S^2}{8} \lambda_{13}'') \end{split}$$







[Notation as in: Baum and Shah, arXiv: 1808.02667]



#### **Basis Change:**

Interaction Basis Parameters:  $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \tan\beta, v_S, m_S^{2\prime}, \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'' = \lambda_2'', \lambda_3''$ 

#### Mass Basis Parameters:

 $m_{h_1}, m_{h_2}, m_{h_3}, m_A, m_{A_S}, m_{H^{\pm}}, \alpha_1, \alpha_2, \alpha_3,$  $\tan\beta, v_S, \tilde{\mu}^2, \lambda'_{14}, \lambda'_{25}, \lambda''_{13}$ 

 $= R(\alpha_{1,2,3})$ 

 $v = \sqrt{v_1^2 + v_2^2}$ 

 $\tan(\beta) = \frac{v_2}{v_1}$ 

 $\lambda'_{14} = \lambda'_1 - 2\lambda'_4 \ \lambda'_{25} = \lambda'_2 - 2\lambda'_5$ 

 $\lambda_{13}'' = \lambda_1'' - \lambda_3''$ 

 $\tilde{\mu}^2 = \frac{m_{12}^2}{\sin\beta\cos\xi}$