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DM mass range

80 orders of magnitude!
Plethora of models!

Ultralight DM (ULDM) Light DM WIMPs Composite DM PBHs/MACHOs
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Many different interactions & many different probes
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[O’Hare, Axionlimits]

Many different interactions & many different probes

Examples: coupling to photons, axion-like particles (ALPs)



The dark matter landscape

Many different interactions & many different probes

Examples: coupling to photons, kinetically-mixed dark photons

[O’Hare, Axionlimits]

6



Motivation

Can we leverage quantum sensing techniques to probe unexplored regions of DM model space 
with tabletop experiments?

[O’Hare, Axionlimits] [O’Hare, Axionlimits]
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Motivation

Can we leverage quantum sensing techniques to probe unexplored regions of DM model space 
with tabletop experiments?

Yes, by measuring DM-sourced magnetic fields with trapped-ion interferometry

Yes, with trapped-ion interferometry 

[O’Hare, Axionlimits] [O’Hare, Axionlimits]
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Key features of trapped-ion interferometry
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Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]
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Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]
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Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]

Key features:

Matter-wave interferometry (Ramsey sequence) with electrically charged states 
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Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]

Key features:

Matter-wave interferometry (Ramsey sequence) with electrically charged states 

Entanglement of spin and motional degrees of freedom 

Magnetically-insensitive states -> long coherence times of the excited state
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Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]

Key features:

Matter-wave interferometry (Ramsey sequence) with electrically charged states 

Entanglement of spin and motional degrees of freedom 

Magnetically-insensitive states -> long coherence times of the excited state

Harmonic and rotationally symmetric potential in 2D 

Excellent control over systematics [West, PRA 2019]



A sketch of trapped-ion interferometry
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Step 1: ion is prepared in the spin down state and placed at the centre of the trap 

position space x-phase space



A sketch of trapped-ion interferometry
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Step 2: apply a beam-splitter pulse

position space x-phase space

Linear superposition of spin down and spin up



A sketch of trapped-ion interferometry
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Step 3: apply N successive spin-dependent laser kicks (SDKs) in the x-direction 
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A sketch of trapped-ion interferometry
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Step 4: non-adiabatic displacement of the trap centre in the y-direction
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A sketch of trapped-ion interferometry
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Step 5: free evolution of the ions in the trap 
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M round trips after a time Δt



A sketch of trapped-ion interferometry
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Step 6: reverse trap displacement non-adiabatically
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A sketch of trapped-ion interferometry

20

Step 7: reverse SDKs
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A sketch of trapped-ion interferometry
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Step 8: measure the ions in the qubit spin states 
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Trapped-ion interferometers as B-field sensors
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Ions evolve in counterpropagating orbital motion



Trapped-ion interferometers as B-field sensors
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Ions evolve in counterpropagating orbital motion

Electromagnetic phase shift only depends on the magnetic vector potential
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Ions evolve in counterpropagating orbital motion

Electromagnetic phase shift only depends on the magnetic vector potential
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Trapped-ion interferometers as B-field sensors
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Ions evolve in counterpropagating orbital motion

Electromagnetic phase shift only depends on the magnetic vector potential

Dynamical Zeeman shift with (motional) magnetic moment



Trapped-ion interferometers as B-field sensors
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[Campbell, Hamilton, JPB 2017]



Trapped-ion interferometers as B-field sensors
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[Campbell, Hamilton, JPB 2017]
Key idea: 

to use trapped-ion interferometry to detect

slow-varying magnetic fields sourced by ULDM !
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Models

Kinetically-mixed DPs                                    ALPs
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Kinetically-mixed DPs                                    ALPs
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Models

Kinetically-mixed DPs                                    ALPs

ULDM sources e.m. fields with angular frequency m 
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Models

Kinetically-mixed DPs                                    ALPs

ULDM sources e.m. fields with angular frequency m 

WARNING: 

Boundary conditions -> cavity



Which cavity should we use?
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Since Δt > 1 s, a TI would be most sensitive to signals oscillating with frequencies below 1 Hz. 

Key point:
Most sensitive to 

DM with mass 
≲ 10-15eV



Which cavity should we use?
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Since Δt > 1 s, a TI would be most sensitive to signals oscillating with frequencies below 1 Hz.

We expect that shielding in the lab suppresses high-frequency magnetic fields
 

Key point:
In the lab, limited 
sensitivity to DM 

with mass ≳ 10-13eV



Which cavity should we use? The Earth-ionosphere/IPM!
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Well below  10 Hz, the Earth’s core and the ionosphere/interplanetary medium act as good 
concentric spherical conducting boundaries [Fedderke et al., PRD 2021; Arza et al., PRD 2022] 

R
R+h



Which cavity should we use? The Earth-ionosphere/IPM!
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Well below  10 Hz, the Earth’s core and the ionosphere/interplanetary medium act as good 
concentric spherical conducting boundaries [Fedderke et al., PRD 2021; Arza et al., PRD 2022] 

R
R+h

Skin depths (frequency-dependent)

Inner boundary

Outer boundary
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Signal in a cavity with concentric spherical boundaries 

Boundary conditions

R
R+h, h<<R
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Signal in a cavity with concentric spherical boundaries  

Boundary conditions

E field is 
parametrically 

suppressed in the 
quasistatic regime

R
R+h, h<<R
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Signal in a cavity with concentric spherical boundaries  

Boundary conditions

Valid in the 
quasistatic regime

R
R+h, h<<R
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Signal in a cavity with concentric spherical boundaries  

Boundary conditions

Valid in the 
quasistatic regime

R
R+h, h<<R

Key take-home message: 



Noise projections
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[Campbell, Hamilton, JPB 
2017]

Dominated by ambient 
magnetic noise

  Fullerkrug and Fraser-Smith [2011],
Constable and Constable [2023] 



Projected sensitivity: DPs
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[Campbell, Hamilton, JPB 
2017] 

Signal is insensitive to 
latitude + longitude + trap 
orientation tangent to the 

Earth’s surface



Projected sensitivity: ALPs
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Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s 
magnetic field) [IGRF 2021]



Projected sensitivity: ALPs
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Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s 
magnetic field) 



Projected sensitivity: ALPs
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Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s 
magnetic field) 



Projected sensitivity: ALPs
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Signal is sensitive to latitude + longitude + 
directionality known a priori (set by the 

Earth’s magnetic field) 

[Campbell, Hamilton, JPB 
2017] 



Summary

Trapped-ion interferometers are sensitive to small B-fields via the dynamical Zeeman effect

In light of their promising projected reach, trapped-ion interferometers are poised to probe 
unexplored regions of ULDM parameter space!

Thank you for your attention. 
Stay tuned!
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