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The dark matter landscape

Many different interactions & many different probes

Examples: coupling to photons, axion-like particles (ALPs)
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The dark matter landscape

Many different interactions & many different probes

Examples: coupling to photons, kinetically-mixed dark photons
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Motivation

Can we leverage quantum sensing techniques to probe unexplored regions of DM model space
with tabletop experiments?
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Motivation

Can we leverage quantum sensing techniques to probe unexplored regions of DM model space
with tabletop experiments?

Yes, by measuring DM-sourced magnetic fields with trapped-ion interferometry
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Key features of trapped-ion interferometry

Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]
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Key features of trapped-ion interferometry

Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]
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Matter-wave interferometry (Ramsey sequence) with electrically charged states
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Key features of trapped-ion interferometry

Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]
Key features:
Matter-wave interferometry (Ramsey sequence) with electrically charged states
Entanglement of spin and motional degrees of freedom

Magnetically-insensitive states -> long coherence times of the excited state
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Key features of trapped-ion interferometry

Proposal developed by Wes Campbell and Paul Hamilton for rotation sensing [JPB, 2017]

Key features:

Matter-wave interferometry (Ramsey sequence) with electrically charged states
Entanglement of spin and motional degrees of freedom
Magnetically-insensitive states -> long coherence times of the excited state
Harmonic and rotationally symmetric potential in 2D

Excellent control over systematics [West, PRA 2019]
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A sketch of trapped-ion interferometry

Step 1:ion is prepared in the spin down state and placed at the centre of the trap

position space
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A sketch of trapped-ion interferometry

position space

Step 2: apply a beam-splitter pulse

x-phase space

A x

Linear superposition of spin down and spin up
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A sketch of trapped-ion interferometry

Step 3: apply N successive spin-dependent laser kicks (SDKs) in the x-direction
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A sketch of trapped-ion interferometry

Step 4: non-adiabatic displacement of the trap centre in the y-direction
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A sketch of trapped-ion interferometry

Step 5: free evolution of the ions in the trap
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A sketch of trapped-ion interferometry

Step 6: reverse trap displacement non-adiabatically
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A sketch of trapped-ion interferometry

Step 7: reverse SDKs

A x
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A sketch of trapped-ion interferometry

Step 8: measure the ions in the qubit spin states
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Trapped-ion interferometers as B-field sensors

lons evolve in counterpropagating orbital motion
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Trapped-ion interferometers as B-field sensors

lons evolve in counterpropagating orbital motion

!

Electromagnetic phase shift only depends on the magnetic vector potential

A¢:2eL<ﬁA-d1

At
~ 26/ B - ﬁdt
0 dt
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Trapped-ion interferometers as B-field sensors

lons evolve in counterpropagating orbital motion

!

Electromagnetic phase shift only depends on the magnetic vector potential
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Trapped-ion interferometers as B-field sensors

lons evolve in counterpropagating orbital motion

!

Electromagnetic phase shift only depends on the magnetic vector potential

Aq§:2efA-dl

At
=2 [ B Zlat iS  NAk
0

dt P ~ Yd

Dynamical Zeeman shift with (motional) magnetic moment
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Trapped-ion interferometers as B-field sensors
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Trapped-ion interferometers as B-field sensors

VS8 =5x10""T/VvVHz

_ wAt\ |7t/ 1s 1
sinc — A7 N

1072 1071 109 10!

[Campbell, Hamilton, JPB 2017]
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Models

Kinetically-mixed DPs

ALPs
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Models

Kinetically-mixed DPs
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Models

Kinetically-mixed DPs
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Models

Kinetically-mixed DPs ALPs
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ULDM sources e.m. fields with angular frequency m
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Models

Kinetically-mixed DPs ALPs
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ULDM sources e.m. fields with angular frequency m
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Which cavity should we use?

Since At > 1 s, a Tl would be most sensitive to signals oscillating with frequencies below 1 Hz.
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Which cavity should we use?

Since At > 1 s, a Tl would be most sensitive to signals oscillating with frequencies below 1 Hz.

We expect that shielding in the lab suppresses high-frequency magnetic fields
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Which cavity should we use? The Earth-ionosphere/IPM!

Well below 10 Hz, the Earth’s core and the ionosphere/interplanetary medium act as good
concentric spherical conducting boundaries [Fedderke et al., PRD 2021; Arza et al., PRD 2022]

h ~ O(100km)
Rg ~ 6 x 10° km
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Which cavity should we use? The Earth-ionosphere/IPM!

Well below 10 Hz, the Earth’s core and the ionosphere/interplanetary medium act as good
concentric spherical conducting boundaries [Fedderke et al., PRD 2021; Arza et al., PRD 2022]

h ~ O(100km)
Rg ~ 6 x 10° km

Skin depths (frequency-dependent)

Inner boundary

) <L h for mpym Z 10718 eV

core

Outer boundary

ionosphere << h fOI' 10_13 eV SJ mDM 5 10_8 eV

8 oy < h for10 eV <mpy S 107 P eV
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Signal in a cavity with concentric spherical boundaries

Boundary conditions

i-B=0 AxE=0 Tt




Signal in a cavity with concentric spherical boundaries

Boundary conditions
n-B=0 nxE=0

J st

E field is
parametrically
suppressed in the
quasistatic regime

fE.dlzl(vXE).dszfatB-ds — E ~ (mpuR) B
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Signal in a cavity with concentric spherical boundaries

Boundary conditions
n-B=0 nxE=0

Jeft

Valid in the
quasistatic regime

fB-dl:/(VXB)-dSZ/JefrdS = B~ (mpmR)Jest
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Signal in a cavity with concentric spherical boundaries

Boundary conditions

i-B=0 axE=0 Jo

Valid in the
quasistatic regime
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Noise projections
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171y +
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N =100
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yq = 100 pm
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Dominated by ambient
magnetic noise

Fullerkrug and Fraser-Smith [2011],
Constable and Constable [2023]
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Projected sensitivity: DPs
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Signal is insensitive to
latitude + longitude + trap
orientation tangent to the

Earth’s surface
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Projected sensitivity: ALPs

Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s
magnetic field) [IGRF 2021]
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Projected sensitivity: ALPs

Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s

magnetic field)
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Projected sensitivity: ALPs

Signal is sensitive to latitude + longitude + directionality known a priori (set by the Earth’s

magnetic field)
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Projected sensitivity: ALPs
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Summary

Trapped-ion interferometers are sensitive to small B-fields via the dynamical Zeeman effect

In light of their promising projected reach, trapped-ion interferometers are poised to probe
unexplored regions of ULDM parameter space!

Thank you for your attention.
Stay tuned!
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