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SM does not explain neutrino masses
Natural explanation for the scale ==) Seesaw Models

High-scale seesaws: mixing (NP) proportional to m_. Example: type-|
y2’v2
M

Low-scale seesaws: m suppressed by a symmetry-protected small
parameter ==) mixing (NP) unsuppressed. Typical NP signal:

m, —
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We define the Dirac Type-l seesaw as:
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2) Majorana mass terms (and tree-level 7Lvr ) are forbidden by
symmetry
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Goldstone Theorem



Why is the Goldstone not observed?

Usually, Goldstone appears as a dynamical explanation for mass
generation, as a DM-candidate or to fix some problem like axions



Why we do not observe the Goldstone?

Usually, Goldstone appears as a dynamical explanation for mass
generation, as a DM-candidate or to fix some problem like axions

However, Goldstone phenomenology can be used to prove NP in
LFV [S. Centelles Chulia et al. , 2404.15415]
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Qualitative arqument: EFT

Let us work with SM + U(1) + a new scalar singlet, o, that breaks the
u(1).
_ 1 0 :
o= ﬁ(’UJ—I—O' —|—zG)

When going to the EFT we have two possibilities depending on the

VEV
U(1) is already violated
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U(1) holds as a global symmetry
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New light dofs are quite constrained: expansion rate
in CMB, BBN, etc.

Using Boltzmann equations one can compute the
energy density and translate into N_

Prad :p"/ 8 11 .0'7

7 (4 \*3 Pv + Prsm
1+ - (_) Neff] ) Neff —

1

ANy =Ny — N> <0.163



() ()
Remember: L L M, My Ng

1"



Remember: (7r NL)(O M1)<VR)

Ms; My /) \ Ng
Minimal scheme: SM + U(1) 4+ o + Ny + Ny + vg == two realizations

Canonical Enhanced Diracon

Fields | SU2), @ U(1)y | U(1)p U(l)p
H (2,3) 0 0
o (1,0) 3 3
L (2,-3) | )
VR (1,0) (—4,—4, 5) 2
Np (1,0) 5| 2
Nz (1,0) 41 |
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Canonical Enhanced

om0 () e sl V()

Scalar sector is formally the same for both models: SM + singlet scalar

BUT

/\

Vg KLV Vg >V
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Models: LFV Phenomenology

Canonical Enhanced
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Canonical Enhanced

oo (8, ) () e o ) ()

In the simplifying BSM degenerate limit we find

BR(u—e D) —14 19 BR(u—e D) my \ 2
<1.02-1 ~ 2.3 8’2(—N)
BR(pu—ey) — 0 0 Y BR(u—e ) 2.3- 107y TeV
1013
But experimental constraints: {EE EZ : ZPIYD))<<41.§510



@® For sizeable Yukawas
(darker blue), the Diracon
dominates, even for high
SSB scales

® /[ — €Y becomes
observable for smaller
Yukawas (lighter blue)

1 decays

107* Ruled out ioy TRIUMF -
—~ 10°° - B

Q )
O g =
1 10 2| =
w0 2] 2
3 10 2=
— & o

S —
M 10712 | 8
| =
10714 A=
1072 | 024 1072 107 10712



Models: v

and Diracon production

R

Canonical Enhanced

e 80 (g ) () @ w0 (g ) ()

Ng VR
L \ NL N
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Production of N: controlled by Y Decay into vg: controlled by Y’

Both couplings (Y and Y') related to m,,
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Cosmology and N_. in the canonical model
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Combination of constraints. Cosmology stronger than LFV
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The Goldstone phenomenology in the Yukawa sector is
completely determined by U(1) charges

Goldstone couplings give us a new window to explore models
and test high scales

Dirac Type-l seesaw is a very promising mechanism because of
complementarity: Flavor vs Cosmology

New directions to explore: enhanced Goldstone as DM-candidate,
collider signatures, etc.



Backup: Cosmology and N_. in the canonical model
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vg contribution to N, in terms of ¢/ for a benchmark point
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The key lies in the term that breaks the U(1):

Enhanced inverse seesaw Canonical inverse seesaw
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