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Introduction and Motivation

Heavy Quark Expansion (HQE) – for studying weak inclusive decays of heavy hadrons (decays,

lifetimes, Vub- extraction...)

HQE – systematic expansion in 1/mQ and αs; for Λb up to dimension-six:

Γ(Λb) = Γ0
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Wilson coefficients Ci multiply non-perturbative matrix elements (MEs):

µ̂2
π = − 1

2MΛb

⟨Λb|b̄v(iDµ)(iD
µ)bv|Λb⟩ kinetic operator

ρ̂3D =
1

2MΛb

⟨Λb|b̄v(iDµ)(iv ·D)(iDµ)bv|Λb⟩ Darwin operator

⟨Oi⟩ =
1

2MΛb

⟨Λb|(b̄vΓAq)(q̄ΓBbv)|Λb⟩ four− quark operator (shematic)

accurate predictions require good knowledge of MEs (CD appears to be unexpectedly large)
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experimental data for Λb decays (unlike for B-mesons) – insufficient to determine hadronic

parameters through fits

by applying the equation of motion for gluon fields, ρ̂3D is related to four-quark MEs:
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q
2

∣∣∣Λb

〉
+O

(
1/mb

)

four-quark MEs for Λb carry large uncertainties – estimates within nonrelativistic

constituent quark model (NRCQM) from heavy-baryon spectroscopy see e.g. [Gratrex, Lenz,

BM, Nisandzic, Piscopo, Rusov, 2301.07698].

effect of Darwin term ρ̂3D (∼ large CD) could be easily comparable to that of spectator

four-quark contributions in Γ(Λb) - same 1/m3
b suppression
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Plan:

use lattice QCD results for exclusive form factors in Λb → Λ
1/2+

c , Λ1/2−
c , and Λ

3/2−
c

[Detmold, Lehner, Meinel, 1503.01421; Meinel, Rendon, 2107.13140, 2103.08775]

to constrain µ̂2
π and ρ̂3D via sum rules near zero recoil in inclusive semileptonic decays

Λb → Xceν̄.
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Sum rules near zero-recoil

SMALL VELOCITY SUM RULES (SVSR): [Bigi, Shifman, Uraltsev, Vainshtein, 9405410]

relating the inclusive decay Λb → Xceν̄e to a sum of exclusive channels

starting point: time-ordered product of weak J = c̄Γb currents:

T =
i

4mΛb

aαβ
∫

d4x e−iq·x ⟨Λb(v, s)|T{J†
α(x)Jβ(0)} |Λb(v, s)⟩

moments of T may be compared making use of

• an OPE on the inclusive side ∼ Im hαβ

• inserting a complete set of states of Λc states on

the exclusive side

the dispersion relation connects both sides at the

semileptonic (SL) cut (0, mΛb
− EΛc)

ϵ = EXc − EΛc : excitation energy along SL cut
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we compute nth-moment of various Dirac structures Γi = {V,A} and for different spatial

or temporal components aαβ :

IΓ1Γ2(n)
a =

1

π

∫ ∆

0

dϵ ϵn aαβ Imh
Γ1Γ2 (OPE)
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=
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the sum is over sπl
l = 1− radial excitations with excitation energies up to a scale ∆

we’ll stay at and close to zero recoil (|q⃗| = 0) and explicitly include only the states

Λ
1/2+

c , Λ1/2−
c , and Λ

3/2−
c into the hadronic sum and take ∆ = 0.75 GeV.

positivity of omitted hadronic contributions implies IΓΓ (n),OPE
ii > IΓΓ (n), had

ii
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For zeroth moments (with Γ = A, V ) at zero recoil:
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Hadronic-side expressions:

Hadronic contributions to the right-hand side — IΓΓ (n), had
αβ ∼ |form factors|2

form factors near zero recoil for Λb → Λ
1/2+

c , Λ1/2−
c , and Λ

3/2−
c — from lattice QCD

[Detmold, Lehner, Meinel, 1503.01421; Meinel, Rendon, 2107.13140, 2103.08775]:

fi = F fi + (w − 1)Afi

non-vanishing contributions: w = v · v′ and (w − 1) ≃ q⃗ 2/(2M2
Λc

)
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∣∣∣2 = 0.094(8) ,
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∣∣∣2 = 0.97(3).
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∣∣∣2 = 0.048(4) .
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Higher moments

For higher moments we use combinations of zeroth, second, and third moments:

Zn =
IAA(3)
kk

En − E0
− IAA(2)

kk , Yn =
IAA(2)
kk

(En − E0)2
− IAA(0)

kk ,

with n = 0 for the ground state Λc, n = 1 for Λ1/2−
c , and n = 2 for Λ3/2−

c .

The combination Zn(Yn) subtracts the contribution of the nth excited state

some moments vanish at zero recoil, other give loose constraints (Yn);

the most relevant constraint comes from Z2 as
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Relevant OPE expressions up to O[q⃗2(Λ3
QCD, αs)]:

Adopt the kinetic scheme [Bigi, Shifman, Vainshtain, 9704245] , redefine heavy-quark masses and

matrix elements accordingly [Fael, Schönwald, Steinhauser, 2011.11655] . Set ∆ = µ = 0.75GeV.
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Constraint Analysis

Constrain µ̂2
π and ρ̂3D via sum-rule inequalities, using lattice inputs with uncertainties

For each point (µ̂2
π, ρ̂

3
D), evaluate the joint probability that the lattice values of moments
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lie below the corresponding OPE values V(µ̂2

π, ρ̂
3
D):

CDF(µ̂2
π, ρ̂

3
D) =

∫ V(µ̂2
π ,ρ̂

3
D)

−∞
p
(
Mhad, Chad

)
dnMhad

We define the allowed region as the set of the points for which the probability exceeds a

chosen threshold Pth =50%.

similar analysis in [Mannel, van Dyk, 1506.08780] - checking for the saturation in the two zeroth moments in inclusive

B-meson decays
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The value of ρ̂3D from the low-scale estimate ρ̂3Dkin ∼ 0.07GeV3 based on the NRCQM is slightly below

the SVSR region.

The SVSR values of µ2
π are consistent with the extraction of the parameter from spectroscopy

µ2
π(Λb) = 0.43(4)GeV2 as (MD −MΛc)− (MB −MΛb

) ≃
(

1
2mc

− 1
2mb

)
(µ2

π(B)− µ2
π(Λb)
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Illustrations of the regions where the OPE expressions exceed the central lattice values for the three
most constraining observables
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Summary

Applied zero-recoil sum rules to constrain the nonperturbative parameters µ̂2
π and ρ̂3D in

inclusive Λb decays.

Extracted the allowed region in (µ̂2
π, ρ̂

3
D) by matching OPE moments to hadronic moments

computed from lattice QCD form factors for Λb→Λ
(∗)
c transitions.

Found the allowed region lies in the same ballpark as low-scale NRCQM estimates (ρ̂3D)

and heavy hadron mass expansions (µ̂2
π)

the Darwin term enters the decay width with a negative Wilson coefficient - its larger

value favoured by our SVSR region would reduce the total decay width of Λb and thus

increase the recently predicted ratio
τ(Λb)/τ(Bd) = 0.955(14) [Gratrex, Lenz, BM, Nisandzic, Piscopo, Rusov, 2301.07698]

shifting it even closer to the measured value.

Future lattice input and further exploration of excited state contributions may refine these

constraints.
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Near saturation

For (µ̂2
π, ρ̂

3
D) values consistent with other constraints, the OPE predictions for IV V

00 and

IAA
kk do not significantly exceed the central lattice values — indicating near saturation by

the ground-state Λc.

This is consistent with the findings of [Mannel, van Dyk, 1506.08780] who used kinetic term

estimates from spectroscopy and Darwin term values from inclusive B decays to check for

the saturation in the two zeroth moments

We adopt the threshold Pth = 50%, primarily driven by IV V,had
00

At present, near-saturation does not indicate a discrepancy—we lack information on

higher-state contributions.

Nonetheless, independent lattice determinations of the Λb→Λc form factors would be

valuable.
16 / 17



µ2
π(Λb) from spectroscopy

The kinetic term can also be estimated using HQE for heavy hadron masses:

(MD −MΛc)− (MB −MΛb
) =

(
1

2mc
− 1

2mb

)(
µ2
π(B)− µ2

π(Λb)) +O(1/m2
c)

Assumptions:

µ2
π(B) = µ2

π(D), µ2
π(Λb) = µ2

π(Λc),

residual mass differences Λ̄Bq − Λ̄B are the same in the b and c sectors

Using µ2
π(B) from the fits [Bordone, Capdevila, Gambino, 2107.00604] gives

µ2
π(Λb) = 0.50(6)GeV2

which lies on the edge of our sum-rule region but remains consistent within the error bar
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