

Hot news on... The phase structure of the SMEF1

PASCOS 2025, the 30th International Symposium on Particles, Strings and Cosmology

Maria Cristina Fiore-University of Granada

Based on : Mikael Chala, MCF and Luis Gil [2507.16905]

The Universe... was bubbling! (Let it cook)

What is a First-Order Phase Transition?

- Sudden change, not smooth
- Bubbles appear and grow
- Like boiling water in the early Universe

The Universe... was bubbling! (Let it cook)

What is a First-Order Phase Transition?

- Sudden change, not smooth
- Bubbles appear and grow
- Like boiling water in the early Universe

Why they matter (a lot)?

- Fulfillment of Sakharov conditions _____
- They source GW we might detect soon

How do we study BSM physics?

to

From <u>specific BSM models</u>

 \rightarrow modify the Higgs potential \rightarrow make the EW phase transition first-order

This type of approach is essential when light degrees of freedom exist beyond those included in the Standard Model

 \rightarrow Captures new physics via higherdimensional operators suppressed by a cutoff scale

Particularly useful when all new physics degrees of freedom are significantly heavier than those of the Standard Model

see talk by Andrii

Agnosticity

Standard Model Effective Field Theory:

Let's you study whole classes of UV completions at once

Exploring: from a Slice to the whole Pie

Exploring: from a Slice to the whole Pie

previous works

[e.g. Camargo-Molina et al. 2103.14022; Camargo-Molina et al. 2410.23210]

Exploring: from a Slice to the whole Pie

previous works

[e.g. Camargo-Molina et al. 2103.14022; Camargo-Molina et al. 2410.23210]

all dimension-6 operators

Zooming in on thermal physics [M. Laine and A. Vuorinen 10.1007/978-3-319-31933-9]

Goal: Determine if a point in SMEFT space leads to a FOPT Method: <u>Dimensional Reduction</u> (DR)

At finite temperature... time is a circle

• Time becomes compactified: Euclidean time $\sim S^1$ of length 1/T

• Fields acquire Matsubara modes

Heavy modes (with n
eq 0) have $M \sim \pi T \Rightarrow$ integrate them out

• What remains: a 3D EFT for bosonic zero modes (temperature dependence is encoded in the parameters of the EFT)

- $\rightarrow \omega_n = 2\pi n T$ (bosons) \succ $\omega_n' = 2\pi \left(n + rac{1}{2}
 ight) T$ (fermions)

8

Matching SMEFT to the 3D EFT

After DR, we get a 3D SU(2) + Higgs model, but:

• In the SM: parameters depend on $g, m_H, T...$ • In SMEFT: they also depend on Wilson coefficients C_i

 g_3 (thermal gauge coupling) **Key parameters**: λ_3 (Higgs quartic coupling) m_3^2 (thermal Higgs mass)

Control curvature of the effective potential and the **position in the phase diagram** Why they matter? • Determine whether the theory undergoes a FOPT or a crossover

Two-loops diagrams from SMEFT operators

SMEFT vertices are represented as a gray circle

Two-loops diagrams from SMEFT operators

Example of a two-loop matching including all dimension-6 operators

SMEFT vertices are represented as a gray circle

$$egin{aligned} &+ rac{47}{3} g_S^2 c_{\phi G} + rac{1}{576} |Y_u|^2 ig(30 c_{\phi \Box} - 15 c_{\phi D} ig) \ &= c_{\phi q}^{(1)} + 18 c_{\phi q}^{(3)} + 24 c_{q u}^{(1)} + 32 c_{q u}^{(8)} ig) \ &= s c_{u G} Y_u^* - 3 c_{u \phi} Y_u^* + ext{h. c.} ig) ig] T^4 \end{aligned}$$

From parameters to phases

How do we determine whether a FOPT actually occurs?

 \rightarrow Use known lattice results for the 3D SU(2) + Higgs theory This combines perturbative SMEFT input with non-perturbative lattice data.

Phase diagram from lattice

[Gürtler et al.-hep-lat/9704013]

Scan over (x, y) to find FOPT region Result: clear phase boundary between crossover and FOPT

This diagram is universal: it applies to any theory that reduces to SU(2)+Higgs in 3D

FIG1. Phase diagram of the high temperature limit of the SM and the SMEFT ¹³

FIG1. Phase diagram of the high temperature limit of the SM and the SMEFT 14

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

• Positive $C_{t\phi}$ shifts the thermal trajectory **toward** the FOPT region But: <u>not enough</u> by itself

Adding $O_{\phi\square}$:

• A moderate $C_{\phi \square}$ (within bounds) pushes the trajectory into the FOPT region

Result: $c_{t\phi} + c_{\phi\Box} \Rightarrow$ **Successful FOPT**

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

• Positive $C_{t\phi}$ shifts the thermal trajectory **toward** the FOPT region But: not enough by itself Adding $O_{\phi\square}$:

• A moderate C_{ϕ} (within bounds) pushes the trajectory into the FOPT region

Result: $c_{t\phi} + c_{\phi\Box} \implies$ **Successful FOPT**

What about O_{ϕ} ? NOT NECESSARY!!

Small negative C_φ can compensate a smaller C_φ□
Allows for both coefficients to stay small and still trigger a FOPT

16

Which SMEFT operators matter most?

Starting with $O_{t\phi}$:

• Positive $C_{t\phi}$ shifts the thermal trajectory toward the FOPT region But: not enough by itself

Adding $O_{\phi\square}$:

• A moderate C_{ϕ} (within bounds) pushes the trajectory into the FOPT region

Result: $c_{t\phi} + c_{\phi\Box} \implies$ **Successful FOPT** Why this is exciting? < $\overset{\rm FOPT}{\scriptstyle -}$ without explicit $\,\phi^6$ term!

What about O_{ϕ} ? **NOT NECESSARY!!**

• Small negative C_{ϕ} can compensate a smaller $c_{\phi \Box}$ Allows for both coefficients to stay small and still trigger a FOPT

FIG 2.- FIG 3. Region of the parameter space allowed by data that gives rise to FOPT in units of TeV^-2

FIG 2.- FIG 3. Region of the parameter space allowed by data that gives rise to FOPT in units of TeV^-2

To conclude:

- We've performed full $\mathcal{O}(g^4)$ dimensional reduction of SMEFT electroweak sector.
- First-order EWPT possible without any T=0 Higgs potential modifications (one- and two-loop matching corrections are essential).
- Expands viable weakly-coupled BSM scenarios; motivates completely new model building and collider searches.

THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?

Power counting of dimension-six SMEFT operators relevant for thermal matching

<i>CX</i>	$\mathcal{O}(g)$
$c_{X^2\phi^4},c_{\phi^4D^2$	$\mathcal{O}(g^2)$
c_{ψ^2}	$\mathcal{O}(g^3)$
Co	$\mathcal{O}(g^4)$

3 $\mathcal{C}_{\psi^2 X \phi}, \mathcal{C}_{\psi^2 \phi^2}, \mathcal{C}_{\psi^4}$ $^2\phi^3$ 6

Experimentally allowed values for $c_{t\phi}, c_{\phi G}, c_{t\phi}, c_{\phi \Box} (TeV^{-2})$ as derived using **SMEFiT** upon marginalizing over other operators

 $c_{t\phi}$

One-loop results

At one loop, the non-vanishing SMEFT contributions to the 3D EFT read:

$$k_{\phi} = \frac{1}{12} (c_{\phi D} - 2c_{\phi \Box}) T^2 \qquad \qquad \lambda_{\phi^2 B}$$

$$k_{B_0} = -\frac{2}{3} c_{\phi B} T^2$$

$$k_{W_0} = -\frac{2}{3} (c_{\phi W} + 3g c_{3W}) T^2 \qquad \qquad \lambda_{\phi^2 W_0^2} = \frac{1}{2} \lambda_{$$

$$k_B = -\frac{2}{3} c_{\phi B} T^2 \qquad \qquad \lambda_{\phi^2 B_0 W_0}$$

$$k_W = -\frac{2}{3}(c_{\phi W} + 3gc_{3W})T^2$$

$$m_{\phi}^2 = \frac{1}{12} \mu^2 \left(c_{\phi D} - 2c_{\phi \Box} \right) T^2$$

$$\begin{split} \lambda_{\phi^4} &= \left[-c_{\phi} + \frac{1}{4} \left(g'^2 c_{\phi B} + g' g c_{\phi WB} + 3g^2 c_{\phi W} \right) \right. \\ &+ \lambda c_{\phi \Box} + \frac{1}{48} \left(3(g'^2 + g^2) - 16\lambda \right) c_{\phi D} \\ &- \frac{1}{12} \left(c_{e\phi} Y_e^* + 3 \left(c_{d\phi} Y_d^* + c_{u\phi} Y_u^* \right) + \text{h.c.} \right) \right] T^3 \end{split}$$

 ${}_{B_0^2} = \frac{1}{48} g'^2 \Big(6c_{\phi\Box} + 9c_{\phi D} - 8c_{\phi e} - 8c_{\phi l}^{(1)} \Big)$ $+16c_{\phi u}-8c_{\phi d}+8c_{\phi q}^{(1)}$

 $\frac{1}{48}g^2 \left(6c_{\phi\Box} + c_{\phi D} + 8c_{\phi l}^{(3)} + 24c_{\phi q}^{(3)}\right)T^3$

 $=\frac{1}{24}g'g\Big(6c_{\phi\Box}+5c_{\phi D}$ $-4c_{\phi e} - 4c^{(1)}_{\phi l} + 4c^{(3)}_{\phi l}$ $+ 8c_{\phi u} - 4c_{\phi d} + 4c_{\phi q}^{(1)} + 12c_{\phi q}^{(3)} T^{3}$

24

Example : Matching m_{ϕ}^2 by $\mathscr{O}_{\phi e}$

For the sake of clarity, we compute the contribution of $c_{\phi e}$ to m_{ϕ}^2 in the limit of vanishing g', g and λ and with only one family of fermions. To this aim, we consider the Green's function $\mathscr{G}_{\phi\phi}$ at zero momentum.

$$\begin{split} \mathscr{G}_{\phi\phi} &\sim 4 \, \sum_{\{QR\}} \left[\frac{1}{Q^2 (Q+R)^2} + \frac{Q \cdot R}{Q^2 R^2 (Q+R)^2} \right] \\ &= 2 \, \sum_{\{QR\}} \left[\frac{1}{Q^2 (Q+R)^2} + \frac{1}{Q^2 R^2} - \frac{1}{R^2 (Q+R)^2} \right] \\ &= 2 \left[\sum_{\{Q\}R} \frac{1}{Q^2 R^2} + \sum_{\{QR\}} \frac{1}{Q^2 R^2} - \sum_{Q\{R\}} \frac{1}{R^2 Q^2} \right]; \end{split}$$

where ~ indicates that we are ignoring the factor $c_{\phi e}|Y_e|^2$. Substituting the sum-integrals and taking into account that, in the 3D EFT, $\mathscr{G}_{\phi\phi} = m_{\phi}^2$, we therefore have:

$$\begin{split} m_{\phi}^2 &= -2c_{\phi e}|Y_e|^2 \left[I_{100}^b I_{100}^f + (I_{100}^f)^2 - I_{100}^f I_{100}^b \right] \\ &= -\frac{1}{288} c_{\phi e}|Y_e|^2 T^4 \,, \end{split}$$

25