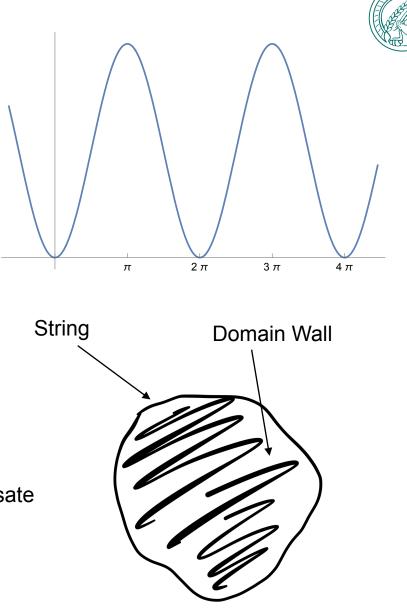

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **COSMIC STRINGS AND DOMAIN WALLS OF THE QCD** 0 0 0 0 0 0 0 QUARK CONDENSATE WITH AND WITHOUT A HIDDEN 0 0 0 0 AXION 0 0 0 0 0 0 0 0 0 0 Anja Stuhlfauth 0 0 0 0 0 0 0

0

n collaboration with Gia Dvali and Lucy Komise	0						0						•	• •	0	0	
Based on arXiv:2505.03542 [hep-ph]							0) c		0		0	0	0 0		-	
PASCOS 2025 Durham															0 0	0 0	
uly 24th 2025																0 0	
0 0	0	0	0	0	0	0 0	o o) c	o	0	0	0	•	0 0	0	0	
				0	0	0 0	0) c	0	0	0	0	0 0	0 0	0	0	

TOPOLOGICAL DEFECTS IN η' AND π^0


- Vacuum of QCD is 2π periodic in the phases of the quark condensate
- Spontaneous breaking of chiral symmetry
 - \Rightarrow Topological defects in η' , π^0
- 2π -domain walls bounded by strings
- Closed bubbles, membrane bounded by string, ...
- Unstable, can punch hole through DW

TOPOLOGICAL DEFECTS IN $\eta' \, {\rm AND} \, \pi^0$ with hidden axion

$$\mathcal{L} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu,a} + \mathrm{i}\overline{\psi}D_{\mu}\gamma^{\mu}\psi - \overline{\psi}_L M_q\psi_R + \theta \frac{g^2}{32\pi^2}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}$$

- CP violation: $\overline{\theta} = \theta + \arg(\det M_q)$
- Strong CP puzzle: Why do we live in sector with tiny or zero $\overline{\theta}$?
 - \Rightarrow Solution: Axion
- Axion strings and walls are accompanied by windings in quark condensate

PECCEI QUINN '77

Anomalous $U(1)_{PO}$ Heavy guark $\Psi \rightarrow e^{i\frac{1}{2}\alpha\gamma_5}\Psi$ PQ field $\langle \Phi \rangle = f_{\phi}$ Axion: $\theta_{\phi} = \frac{\phi}{\sqrt{2}f_{\phi}}$ [Weinberg, Wilczek '78] Instanton induced potential: ['t Hooft '76] $V(\theta_{\phi}) = -\Lambda^4 \cos(\theta_{\phi}(x) - \overline{\theta})$ Vacuum angle $\theta_{\text{eff}}(x) = \theta_{\phi}(x) - \overline{\theta}$ becomes dynamical

Anomalous $U(1)_A$ Massless quark $\psi \rightarrow e^{-i\frac{1}{2}\alpha\gamma_5}\psi$ Quark condensate $\langle \overline{\psi} \psi \rangle = \Lambda^3$ Axion: $\theta_{\eta} = \frac{\eta'}{\sqrt{2}f_n}$ Instanton induced potential: ['t Hooft '76] $V(\theta_n) = -\Lambda^4 \cos(\theta_n(x) - \overline{\theta})$ Vacuum angle $\theta_{\text{eff}}(x) = \theta_{\eta}(x) - \overline{\theta}$ becomes dynamical $\Rightarrow \eta'$ is the axion [Dvali '05]

η' AS POOR-QUALITY AXION

 $m_{\psi} = 0$: η' is the axion

 $m_{\psi} \neq 0$ explicitly breaks $U(1)_A$

 $\Rightarrow \text{Effective vacuum angle } \theta_{\text{eff}} = \frac{m_{\psi}}{\Lambda} \overline{\theta}$

 $\Rightarrow \eta'$ is a poor-quality axion [Dvali '05]

 \Rightarrow need PQ axion

COUPLED SYSTEM OF η^\prime and axion

Massless quark ψ

• Combination of $U(1)_{PQ}$ and previous $U(1)_A$:

•
$$U(1)_V: \Psi \to e^{i\frac{1}{2}\alpha\gamma_5}\Psi, \psi \to e^{-i\frac{1}{2}\alpha\gamma_5}\psi$$
 (anomaly free)

•
$$U(1)_A: \Psi \to e^{i\frac{1}{2}\alpha\gamma_5}\Psi, \psi \to e^{i\frac{1}{2}\alpha\gamma_5}\psi$$
 (anomalous)

- Potential:
$$V\!\left(\theta_{\phi},\theta_{\eta}\right)=-\,\Lambda^4\cos(\theta_{\phi}+\theta_{\eta}-\overline{\theta}\,)$$

• Massive
$$\frac{a_{\eta}}{\sqrt{2}\tilde{f}} = \theta_{\phi} + \theta_{\eta} \implies a_{\eta} \simeq \eta'$$
 is the axion

- Massless
$$a_\phi \simeq \phi$$

COUPLED SYSTEM OF η^\prime and axion

Massive quark ψ

• Combination of $U(1)_{PQ}$ and previous $U(1)_A$:

• $U(1)_V: \Psi \to e^{i\frac{1}{2}\alpha\gamma_5}\Psi, \psi \to e^{-i\frac{1}{2}\alpha\gamma_5}\psi$ (anomaly free, explicitly broken by m_{ψ})

•
$$U(1)_A: \Psi \to e^{i\frac{1}{2}\alpha\gamma_5}\Psi, \psi \to e^{i\frac{1}{2}\alpha\gamma_5}\psi$$
 (anomalous)

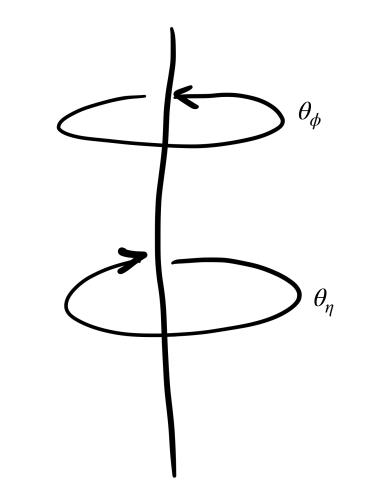
• Potential: $V(\theta_{\phi}, \theta_{\eta}) = -\Lambda^4 \cos(\theta_{\phi} + \theta_{\eta} - \overline{\theta}) - m_{\psi} \Lambda^3 \cos(\theta_{\eta})$

• Massive
$$\frac{a_{\eta}}{\sqrt{2}\tilde{f}} = \theta_{\phi} + \theta_{\eta}$$

• Massive $a_{\phi} \simeq \phi$ is the axion

STRINGS AND WALLS OF η' AND AXION

Massless quark ψ


 $U(1)_V$ (anomaly free) and $U(1)_A$ (anomalous)

 $V = -\Lambda^4 \cos(\theta_\phi + \theta_\eta)$

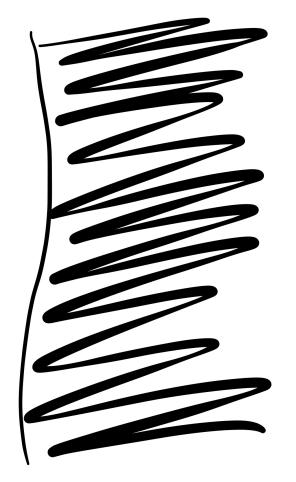
Lowest energy topological defects:

 $\Rightarrow \text{String of } U(1)_V : \theta_\phi = - \ \theta_\eta = n \varphi$

 \Rightarrow String-wall of combination of $U(1)_V \times U(1)_A$: $\theta_\eta = n\varphi$

STRINGS AND WALLS OF η' and axion

Massive quark ψ


 $U(1)_V$ (anomaly free) and $U(1)_A$ (anomalous)

 $V = -\Lambda^4 \cos(\theta_{\phi} + \theta_{\eta}) - m_{\psi} \Lambda^3 \cos(\theta_{\eta})$

Lowest energy topological defects:

 \Rightarrow String-wall of $U(1)_V$: $\theta_{\phi} = -\theta_{\eta} = n\varphi$

 \Rightarrow String-wall of combination of $U(1)_V \times U(1)_A$: $\theta_\eta = n\varphi$

DFSZ TYPE AXION MODEL

PQ field Φ , two Higgs doublets H_u and H_d (with phases χ_u and χ_d), two light quarks u and d $m_u = 0$: anomaly free $U(1)_V$

Lowest energy axion string: $\theta_{\phi} = -\chi_u = n\varphi$ combination of $U(1)_V$ and $U(1)_Z$

 \Rightarrow Axion strings carry non-integer Z-flux (semiglobal) [Dvali, Senjanovic '93], can have winding in π^0

 $m_u \neq 0$: String-wall system

IMPLICATIONS FOR

• Anomaly inflow & Superconductivity [Callan, Harvey '85, Witten '85]:

winding of phase of quark condensate around string changes its anomaly content

- Cosmology: string-wall systems of phases of QCD condensate can dominate early cosmology if $\Lambda \gg f_{\phi}$ in early Universe [Dvali '95]
- QCD phase transition: produce string-wall system of phases of QCD quark condensate, their collapse produces gravitational waves
- Heavy Ion colliders: production of string-wall systems of QCD condensate?

ANJA STUHLFAUTH

TOPOLOGICAL DEFECTS OF THE QCD QUARK CONDENSATE WITH AND WITHOUT A HIDDEN AXION

- Topological defects in phases of the QCD quark condensate
- Axion string-wall systems accompanied by windings in QCD quark condensate
 - \Rightarrow Affects physical properties of axion defects
- Relevant for QCD phase transition, early Universe, Cosmology

o o o o o o o o o o o	• • • • • • • • • • • • • • • • • • •	0 0
o o o o o o o o o o o	• • • • • • • • • • • • • • • • • • •	0 0
	• • • • • • • • • • • • • • • • • • •	0 0
	• • • • • • • • • • • • • • • • • • •	0 0
0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • •	0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0
0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
		0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
BACKUP SL		0 0
BACKOI SL		0 0
0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0
0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
0 0 0 0 0 0 0 0 0 0 0		0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	0 0
		0 0
		0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
		0 0
		0 0
		0 0
		0 0
		0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
		0 0
ANJA STUHLFAUTH	POLOGICAL DEFECTS OF THE QCD QUARK CONDENSATE WITH AND WITHOUT A HIDDEN AXION	10

DFSZ TYPE AXION MODEL

Effective potential for $m_u = 0$:

 $V = -\mu f_{\phi} v_{u} v_{d} \cos(\theta_{\phi} + \chi_{u} + \chi_{d}) - m_{d} \Lambda_{d}^{3} \cos(\chi_{d} + \theta_{d}) - m_{d} \Lambda_{u}^{3} \cos(\theta_{u} - \chi_{d}) - \Lambda^{4} \cos(\theta_{u} + \theta_{d})$ Comes from $\mu \Phi H_{u} H_{d}$, Yukawa of d, Yuk of d + 'tHooft det, 'tHooft det

$$U(1)_{V}: \theta_{\phi} \to \theta_{\phi} - 2\alpha, \ \chi_{u} \to \chi_{u} + \alpha, \ \chi_{d} \to \chi_{d} + \alpha, \ \theta_{u} \to \theta_{u} + \alpha, \ \theta_{d} \to \theta_{d} - \alpha$$

Lowest energy string: $n_{\phi} = 1$, $n_{\chi_u} = -1$

Z-flux:
$$\oint dx_{\mu} Z^{\mu} = \frac{1}{g_z} \frac{v_u^2 n_{\chi_u} - v_d^2 n_{\chi_d}}{v_u^2 + v_d^2}$$

ANJA STUHLFAUTH

INTERNAL STRUCTURE OF QCD WALLS

- Is the phase of the quark condensate well-defined throughout the wall?
- The absolute value of the quark condensate has to be non-zero throughout the wall
- $\theta_{\rm eff}$ changes by 2π through wall, so corrections beyond dilute instant gas approximation may be important for η' domain walls
- Closest cousins: domain walls in $\mathcal{N} = 1$ SQCD [Dvali, Shifman '97]
- Exact solution in large *N*: gaugino condensate is non-zero throughout wall and phase is well-defined everywhere [Dvali, Kakushadze '99]

ANOMALY INFLOW

- Fermions with Yukawa couplings to string field (Φ) deposit 0-mode on string [Jackiw, Rossi '81]
- Zero modes of charged fermions carry superconducting current along string [Witten '85]
- Anomalous global symmetry forming string \Rightarrow 1+1 dimensional theory is anomalous
- Anomaly of 1+1 dimensional theory is canceled by anomaly inflow from bulk [Callan, Harvey '85]
- Important astrophysical implications (electromagnetic radiation [Ostriker, Thompson, Witten '86], Stringmagnetic field interactions [Agrawal, Hook, Huang, Marques-Tavares '21])
- Axion string with one heavy Ψ and one light quark ψ is anomaly free
- Zero modes of Ψ and ψ have opposite chirality

COSMOLOGY

• QCD gauge coupling can strongly depend on the inflaton Σ due to effective operators $W\left(\frac{\Sigma}{M}\right) \text{Tr}G_{\mu\nu}G^{\mu\nu}$ • possible early epoch hierarchy $\frac{f_{\phi}}{\Lambda}\Big|_{\text{early}} \ll 1$ [Dvali '95]

- string-wall systems of phases of QCD condensate can dominate early cosmology
- cosmic strings (PQ or QCD condensate) immediately accompanied by domain walls

PION STRING-WALL SYSTEMS

Phases of light quarks u and d: θ_u and θ_d

Global string in π^0 -direction: $n_{\theta_u} = -n_{\theta_d} = 1$

Quark masses \Rightarrow String-walls

If $v \ll f_u, f_d$ at the moment of quark condensation (early strong QCD):

Z eats up π^0

 $n_{\theta_u} = -n_{\theta_d} = -n_{\chi} = 1$

Integer Z-flux, similar to semilocal string [Achucarro, Vachaspati '00]

ANJA STUHLFAUTH

HEAVY ION COLLISIONS

- formation of solitons during the collision of a small number of high energy quanta is exponentially suppressed [Brown '92, Voloshin '92, Argyres, Kleiss, Papadopoulos '93, ...]
- If final state soliton has maximal microstate degeneracy, it's possible to overcome suppression
- For our case, requires further investigation