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Introduction: Cosmic Topology

 Cosmic topology
 The observational signatures of cosmic topology
 Detectability of cosmic topology
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Cosmic Topology
 Cosmic topology: an old problem. 

 A key goal of cosmic topology: to measure the shape of the 
Universe. 

 If we model the Universe as a manifold, what is the 
topology of that manifold?

 I.e. is the Universe:

• Finite or infinite?

• Open or closed?

• Simply or multiply-connected?

• Orientable or not?

 If the Universe is flat, 18 allowed topology classes: E1-E18

(Riazuelo et al. 2004 and Akrami et al. 2024 for a review).

Henri Poincaré :  
pioneer of modern 

topology

Karl Schwarzschild: multiple images of 
astronomical sources in a Universe with 

non-trivial topology (1900)

Albert Einstein: 1917 -- Universe 
as a simply-connected positively 

curved hypersphere (𝐒𝟑)

William Thurston: Fields medal 
for the study of 3-manifolds 

(1982) 

https://arxiv.org/pdf/astro-ph/0311314.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.171501


Cosmic Topology: Observational Signatures

Clone images of astronomical sources

Pair separation distance
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pairs with matched 

CMB patterns

Fundamental domain

Flat torus (2D)

Simulated finite universe

Detection threshold

WMAP data
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Cosmic Topology: Detectability
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 Non-diagonal elements in the covariance 
matrix encode information about topology: 

 E.g., temperature covariance matrix (𝐸1):

 Kullback–Leibler (KL) divergence measures the 
detectability of these features:

- probability of non-trivial topology

- probability of trivial topology Figure 1: temperature covariance matrix (top). 
KL divergence in E1 topology (bottom).

No circles

Matched-circle pairs

Transfer functions
Primordial power spectrum

Wave vectors



Part 1: In Search of Cosmic 
Topology with Artificial Intelligence 
 The problem
 The dataset
 The algorithms



Detecting Cosmic Topology with AI
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Algorithm 1

Class 1
or

Class 2
…

Class N

Algorithm 2

Class 1
or

Class 2
…

Class N

 The goal: an algorithm to classify harmonic 
space realizations and CMB maps.

 Start with a single topology: 3-torus (E1) of 
different sizes (T + E data).

 Two dataset classes: rotated and non-rotated. 

 Algorithms to try:
• Random forests and XGBoost;

• 1D convolutional neural networks;

• 2D convolutional neural networks;

• Complex neural networks;

• GCNNs trained on spherical map data.

Algorithm 3

Class 1
or

Class 2
…

Class N

Rotating the coordinate 
system (multiplying by 

Wigner D-matrix)

Fundamental domain 
for a given topology

CMB healpix maps

4 classes:
40,000 – 200,000 

realizations

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.05 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.1 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.5 × 𝐿𝐿𝑆𝑆

Trivial topology 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿∞



The Algorithms
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Algorithm 1: random forests and extreme 
gradient boosting

 Trained on 𝑎ℓ𝑚data.
 Simple, yet powerful algorithms.
 Allow calculating feature importance

statistics. 
 Random forest implementation: scikit-

learn.
 Extreme gradient boosting 

implementation: XGBoost

Algorithm 2: 1D and 2D convolutional 
neural networks (CNNs)
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Input layer Extracted feature 
maps

Fully-connected 
layers

Classification 
output

 Trained on 𝑎ℓ𝑚 and 𝐶ℓ𝑚ℓ′𝑚′ data.
 Very powerful algorithms, but can be 

difficult to train.
 1D and 2D CNN implementations with 

TensorFlow. 
 Complex neural network 

implementation with CVNN.

Fully-connected 
layers
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pixelization

CMB temperature 
data Chebyshev convolution 

(ChebConv) layers

 Trained on T and E map data.
 Implementation: based on 

DeepSphere (spherical graph CNNs).
 Extracted features are rotationally-

equivariant.
 Results depend on map resolution, 

and the details of the graph CNN. 

Algorithm 3: Spherical graph convolutional 
neural networks



Part 2: Classifying Topologies in 
Harmonic Space with AI
 The results: XGBoost, 1D, 2D CNNs and CVNNs
 Feature importance analysis
 Results for large topologies



The Results: XGBoost, 1D and 2D CNNs
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Figure 2: Harmonic space realization classification results. 

XGBoost 1D CNN 2D CNN 2D Complex CNN
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Random forests:

XGBoost classifier:

The Results: Feature Importance
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Figure 3: Feature importance analysis for the random forest and 
XGBoost classifiers. 



The Results: 𝑳 ≈ 𝑳𝐋𝐒𝐒
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Figure 4: Classification results for realizations with 
𝐿 ≈ 𝐿LSS.

 Next challenge: classify realizations with 𝑳 >
𝑳𝐋𝐒𝐒.

 We expect this to be more challenging 
(smaller KL divergence, no circles).

 Our techniques work well on non-rotated
data.

 Key challenge: classifying randomly rotated 
harmonic space realizations and CMB maps.

LLSS



Part 3: CMB Map Classification 
with Spherical GCNNs
 Training a CMB map classifier
 DeepSphere results
 Future avenues of research



E1 vs E18 in Pixel Space
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Figure 5. Top: DeepSphere: a graph-based neural network that 
allows applying convolutions on spherical data (Defferrard et al. 

2020). Top right: 𝐸1 topology features in a CMB map.

Our approach:

 Use temperature and E-mode polarisation
maps as input.

 Derivative maps (w.r.t. angular 
coordinates) as extra input channels. 

 Use statistical layers (that apply 
mean/max/histogram operations).

 Explore different resolutions, Chebyshev
polynomial degrees, pooling operations 
etc. 

CMB HEALPix map

Graph built from HEALPix pixels

Visible features related 
to non-trivial topology 𝐸1 [𝐿 = 0.05 × 𝐿LSS] 𝐸18

E1 vs E18 in Pixel Space

https://arxiv.org/abs/2012.15000


DeepSphere Classification Results
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Figure 6: DeepSphere classification results for E1 [𝐿 =

1.01 × 𝐿LSS] vs. E18 non-rotated (top) and rotated 
data (bottom).

 Large topology classification results: 98-99% 
(non-rotated), 63-64% (rotated). 

 As before, E-mode data is crucial.

 Listed classification accuracy requires a training 
dataset with 100-200k maps.

 Results depend on the map resolution and pixel-
ordering.

 Training procedure is generally difficult – fine-
tuning of model parameters are needed.

 A key question: how to make the architecture of 
DeepSphere rotationally invariant?



Future Avenues of Research
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 Current efforts: getting to the bottom of the 
rotation issue.

 A high-dimensional problem – results depend 
on:
• Architecture of the spherical graph CNN;

• Map resolution and pixel ordering;

• Hyperparameters;

• Statistical layers.

 A unique approach: employ the AI Cosmologist
(arXiv:2504.03424).

Figure 7: Pipeline of the AI Cosmologist, that employs 
large language model agents interacting in order to 

generate and test new scientific ideas and approaches.

https://arxiv.org/abs/2504.03424


Thank you for listening!
Summary:
 AI offers a set of valuable tools to detect 

signatures of non-trivial topology.
 ML can correctly classify small and medium-

sized maps and 𝑎ℓ𝑚’s.
 Classifying large randomly rotated 𝑎ℓ𝑚’s and 

maps – the principle challenge.
 A promising approach: DeepSphere.
 Further avenues to explore: AI Cosmologist.

Papers: 
 PRL: Promise of Future Searches for Cosmic Topology

(arXiv:2210.11426)
 Limits on orientable Euclidean manifolds from circle searches 

(arXiv:2211.02603)
 Classification of manifolds using machine learning: a case 

study with small toroidal universes (arXiv:2404.01236)
 Microwave background parity violation without parity-

violating microphysics (arXiv:2407.09400)

Papers Website

https://arxiv.org/abs/2210.11426
https://arxiv.org/abs/2210.11426
https://arxiv.org/abs/2211.02603
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2407.09400
https://arxiv.org/abs/2407.09400
https://arxiv.org/abs/2407.09400

