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Introduction: Cosmic Topology

 Cosmic topology
 The observational signatures of cosmic topology
 Detectability of cosmic topology
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Cosmic Topology
 Cosmic topology: an old problem. 

 A key goal of cosmic topology: to measure the shape of the 
Universe. 

 If we model the Universe as a manifold, what is the 
topology of that manifold?

 I.e. is the Universe:

• Finite or infinite?

• Open or closed?

• Simply or multiply-connected?

• Orientable or not?

 If the Universe is flat, 18 allowed topology classes: E1-E18

(Riazuelo et al. 2004 and Akrami et al. 2024 for a review).

Henri Poincaré :  
pioneer of modern 

topology

Karl Schwarzschild: multiple images of 
astronomical sources in a Universe with 

non-trivial topology (1900)

Albert Einstein: 1917 -- Universe 
as a simply-connected positively 

curved hypersphere (𝐒𝟑)

William Thurston: Fields medal 
for the study of 3-manifolds 

(1982) 

https://arxiv.org/pdf/astro-ph/0311314.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.171501


Cosmic Topology: Observational Signatures
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Cosmic Topology: Detectability
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 Non-diagonal elements in the covariance 
matrix encode information about topology: 

 E.g., temperature covariance matrix (𝐸1):

 Kullback–Leibler (KL) divergence measures the 
detectability of these features:

- probability of non-trivial topology

- probability of trivial topology Figure 1: temperature covariance matrix (top). 
KL divergence in E1 topology (bottom).

No circles

Matched-circle pairs

Transfer functions
Primordial power spectrum
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Part 1: In Search of Cosmic 
Topology with Artificial Intelligence 
 The problem
 The dataset
 The algorithms



Detecting Cosmic Topology with AI
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Algorithm 1

Class 1
or

Class 2
…

Class N

Algorithm 2

Class 1
or

Class 2
…

Class N

 The goal: an algorithm to classify harmonic 
space realizations and CMB maps.

 Start with a single topology: 3-torus (E1) of 
different sizes (T + E data).

 Two dataset classes: rotated and non-rotated. 

 Algorithms to try:
• Random forests and XGBoost;

• 1D convolutional neural networks;

• 2D convolutional neural networks;

• Complex neural networks;

• GCNNs trained on spherical map data.

Algorithm 3

Class 1
or

Class 2
…

Class N

Rotating the coordinate 
system (multiplying by 

Wigner D-matrix)

Fundamental domain 
for a given topology

CMB healpix maps

4 classes:
40,000 – 200,000 

realizations

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.05 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.1 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.5 × 𝐿𝐿𝑆𝑆

Trivial topology 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿∞



The Algorithms
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Algorithm 1: random forests and extreme 
gradient boosting

 Trained on 𝑎ℓ𝑚data.
 Simple, yet powerful algorithms.
 Allow calculating feature importance

statistics. 
 Random forest implementation: scikit-

learn.
 Extreme gradient boosting 

implementation: XGBoost

Algorithm 2: 1D and 2D convolutional 
neural networks (CNNs)
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Classification 
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 Trained on 𝑎ℓ𝑚 and 𝐶ℓ𝑚ℓ′𝑚′ data.
 Very powerful algorithms, but can be 

difficult to train.
 1D and 2D CNN implementations with 

TensorFlow. 
 Complex neural network 

implementation with CVNN.

Fully-connected 
layers
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CMB temperature 
data Chebyshev convolution 

(ChebConv) layers

 Trained on T and E map data.
 Implementation: based on 

DeepSphere (spherical graph CNNs).
 Extracted features are rotationally-

equivariant.
 Results depend on map resolution, 

and the details of the graph CNN. 

Algorithm 3: Spherical graph convolutional 
neural networks



Part 2: Classifying Topologies in 
Harmonic Space with AI
 The results: XGBoost, 1D, 2D CNNs and CVNNs
 Feature importance analysis
 Results for large topologies



The Results: XGBoost, 1D and 2D CNNs
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Figure 2: Harmonic space realization classification results. 
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Random forests:

XGBoost classifier:

The Results: Feature Importance
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Figure 3: Feature importance analysis for the random forest and 
XGBoost classifiers. 



The Results: 𝑳 ≈ 𝑳𝐋𝐒𝐒
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Figure 4: Classification results for realizations with 
𝐿 ≈ 𝐿LSS.

 Next challenge: classify realizations with 𝑳 >
𝑳𝐋𝐒𝐒.

 We expect this to be more challenging 
(smaller KL divergence, no circles).

 Our techniques work well on non-rotated
data.

 Key challenge: classifying randomly rotated 
harmonic space realizations and CMB maps.

LLSS



Part 3: CMB Map Classification 
with Spherical GCNNs
 Training a CMB map classifier
 DeepSphere results
 Future avenues of research



E1 vs E18 in Pixel Space
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Figure 5. Top: DeepSphere: a graph-based neural network that 
allows applying convolutions on spherical data (Defferrard et al. 

2020). Top right: 𝐸1 topology features in a CMB map.

Our approach:

 Use temperature and E-mode polarisation
maps as input.

 Derivative maps (w.r.t. angular 
coordinates) as extra input channels. 

 Use statistical layers (that apply 
mean/max/histogram operations).

 Explore different resolutions, Chebyshev
polynomial degrees, pooling operations 
etc. 

CMB HEALPix map

Graph built from HEALPix pixels

Visible features related 
to non-trivial topology 𝐸1 [𝐿 = 0.05 × 𝐿LSS] 𝐸18

E1 vs E18 in Pixel Space

https://arxiv.org/abs/2012.15000


DeepSphere Classification Results
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Figure 6: DeepSphere classification results for E1 [𝐿 =

1.01 × 𝐿LSS] vs. E18 non-rotated (top) and rotated 
data (bottom).

 Large topology classification results: 98-99% 
(non-rotated), 63-64% (rotated). 

 As before, E-mode data is crucial.

 Listed classification accuracy requires a training 
dataset with 100-200k maps.

 Results depend on the map resolution and pixel-
ordering.

 Training procedure is generally difficult – fine-
tuning of model parameters are needed.

 A key question: how to make the architecture of 
DeepSphere rotationally invariant?



Future Avenues of Research
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 Current efforts: getting to the bottom of the 
rotation issue.

 A high-dimensional problem – results depend 
on:
• Architecture of the spherical graph CNN;

• Map resolution and pixel ordering;

• Hyperparameters;

• Statistical layers.

 A unique approach: employ the AI Cosmologist
(arXiv:2504.03424).

Figure 7: Pipeline of the AI Cosmologist, that employs 
large language model agents interacting in order to 

generate and test new scientific ideas and approaches.

https://arxiv.org/abs/2504.03424


Thank you for listening!
Summary:
 AI offers a set of valuable tools to detect 

signatures of non-trivial topology.
 ML can correctly classify small and medium-

sized maps and 𝑎ℓ𝑚’s.
 Classifying large randomly rotated 𝑎ℓ𝑚’s and 

maps – the principle challenge.
 A promising approach: DeepSphere.
 Further avenues to explore: AI Cosmologist.

Papers: 
 PRL: Promise of Future Searches for Cosmic Topology

(arXiv:2210.11426)
 Limits on orientable Euclidean manifolds from circle searches 

(arXiv:2211.02603)
 Classification of manifolds using machine learning: a case 

study with small toroidal universes (arXiv:2404.01236)
 Microwave background parity violation without parity-

violating microphysics (arXiv:2407.09400)

Papers Website

https://arxiv.org/abs/2210.11426
https://arxiv.org/abs/2210.11426
https://arxiv.org/abs/2211.02603
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2404.01236
https://arxiv.org/abs/2407.09400
https://arxiv.org/abs/2407.09400
https://arxiv.org/abs/2407.09400

