

PASCOS 2025, Durham University

In Search of Cosmic Topology with Al

Andrius Tamošiūnas

IFT UAM-CSIC

Case Western Reserve University

COMPACT Collaboration

COMPACT Collaboration

Glenn STARKMAN

Craig COPI

Arthur KOSOWSKY

Andrew JAFFE

Thiago PEREIRA

Stefano ANSELMI Fernando CORNET-GÓMEZ Javier DUQUE

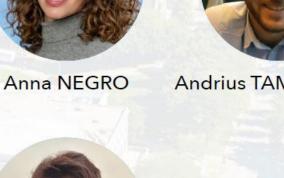
Deyan MIHAYLOV

Andrius TAMOŠIŪNAS

Mikel MARTIN

Joline NOLTMANN

Ananda SMITH Amirhossein SAMANDAR



COMPACT Collaboration

Introduction: Cosmic Topology

- Cosmic topology
- The observational signatures of cosmic topology
- Detectability of cosmic topology

Cosmic Topology

- Cosmic topology: an old problem.
- A key goal of cosmic topology: to measure the shape of the Universe.
- If we model the Universe as a manifold, what is the topology of that manifold?
- I.e. is the Universe:
 - Finite or infinite?
 - Open or closed?
 - Simply or multiply-connected?
 - Orientable or not?
- If the Universe is flat, 18 allowed topology classes: E₁-E₁₈ (Riazuelo et al. 2004 and Akrami et al. 2024 for a review).

PHYSICAL REVIEW LETTERS 132, 171501 (2024)

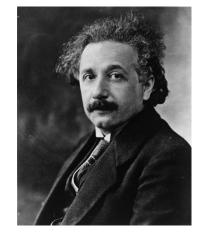
Featured in Physics

Promise of Future Searches for Cosmic Topology

Yashar Akrami®,^{1,2,3,*} Stefano Anselmi®,^{4,5,6,↑} Craig J. Copi®,^{1,‡} Johannes R. Eskilt®,^{7,3,§} Andrew H. Jaffe®,^{3,∥} Arthur Kosowsky®,^{8,¶} Pip Petersen®,^{1,**} Glenn D. Starkman®,^{1,3,↑↑} Kevin González-Quesada,¹ Özenç Güngör,¹ Deyan P. Mihaylov®,¹ Samanta Saha,¹ Andrius Tamosiunas®,¹ Quinn Taylor,¹ and Valeri Vardanyan⁹

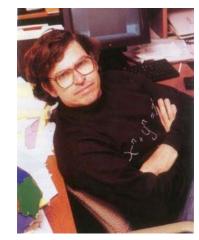
(COMPACT Collaboration)

Henri Poincaré : pioneer of modern topology



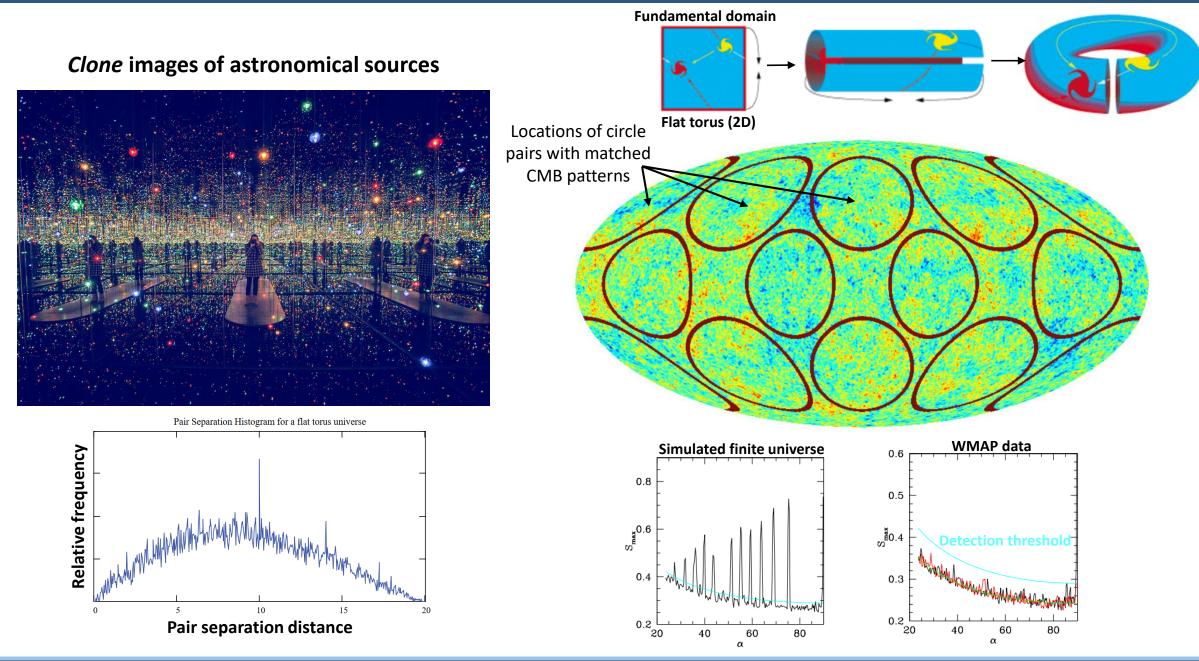
Albert Einstein: 1917 -- Universe as a simply-connected positively curved hypersphere (**S**³)

Karl Schwarzschild: multiple images of astronomical sources in a Universe with non-trivial topology (1900)

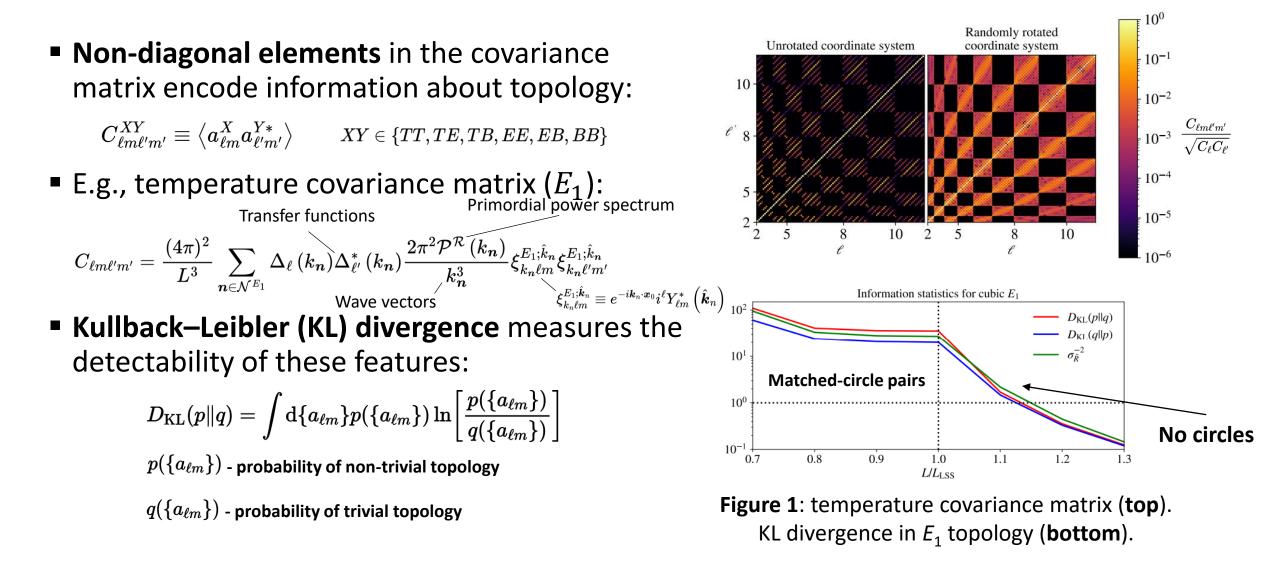


William Thurston: Fields medal for the study of 3-manifolds (1982)

Cosmic Topology: Observational Signatures



Cosmic Topology: Detectability



Part 1: In Search of Cosmic Topology with Artificial Intelligence

- The problem
- The dataset
- The algorithms

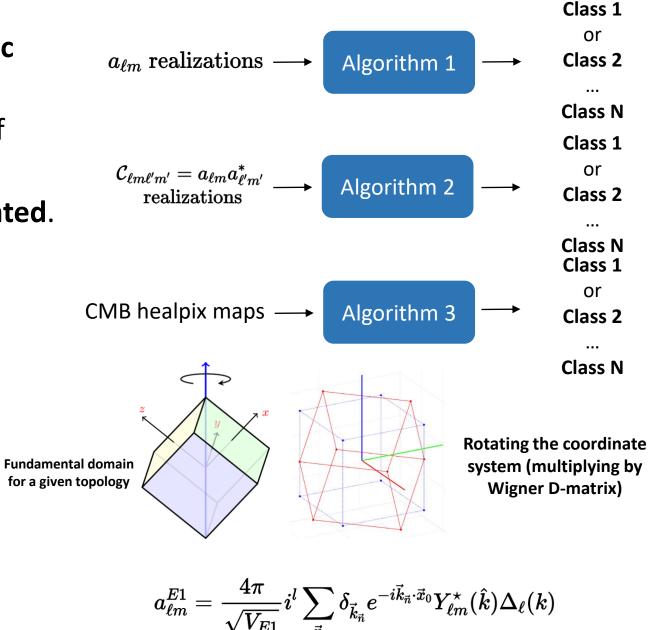
Detecting Cosmic Topology with AI

- The goal: an algorithm to classify harmonic space realizations and CMB maps.
- Start with a single topology: 3-torus (*E*₁) of different sizes (**T** + **E** data).
- Two dataset classes: rotated and non-rotated.
- Algorithms to try:
 - Random forests and XGBoost;
 - 1D convolutional neural networks;
 - 2D convolutional neural networks;
 - Complex neural networks;
 - GCNNs trained on **spherical map data**.

4 classes: 40,000 – 200,000 realizations

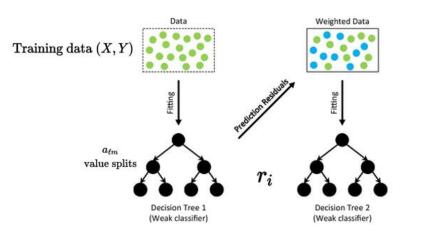
E1 with
$$L_x = L_y = L_z = 0.05 \times L_{LSS}$$

E1 with $L_x = L_y = L_z = 0.1 \times L_{LSS}$
E1 with $L_x = L_y = L_z = 0.5 \times L_{LSS}$
Trivial topology $L_x = L_y = L_z = L_\infty$



The Algorithms

Algorithm 1: random forests and extreme gradient boosting



Algorithm 2: 1D and 2D convolutional neural networks (CNNs)

CMB temperature data **Fully-connected** Chebyshev convolution **Extracted feature** Input layer (ChebConv) layers layers maps Output class Healpix pixelization Classification Fully-connected output layers

- Trained on $a_{\ell m}$ data.
- Simple, yet powerful algorithms.
- Allow calculating feature importance statistics.
- Random forest implementation: scikitlearn.
- Extreme gradient boosting implementation: XGBoost

• Trained on $a_{\ell m}$ and $C_{\ell m \ell' m'}$ data.

nput data

- Very powerful algorithms, but can be difficult to train.
- 1D and 2D CNN implementations with TensorFlow.
- Complex neural network implementation with CVNN.

- Trained on T and E map data.
- Implementation: based on
 DeepSphere (spherical graph CNNs).

Algorithm 3: Spherical graph convolutional

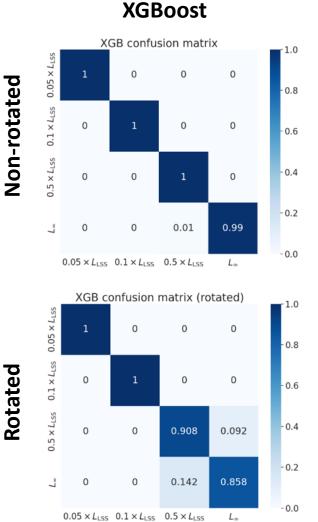
neural networks

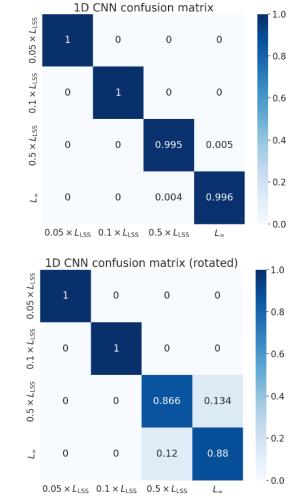
- Extracted features are rotationallyequivariant.
- Results depend on map resolution, and the details of the graph CNN.

Part 2: Classifying Topologies in Harmonic Space with AI

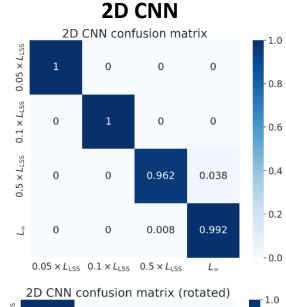
- The results: XGBoost, 1D, 2D CNNs and CVNNs
- Feature importance analysis
- Results for large topologies

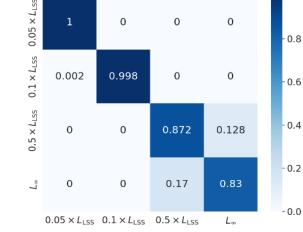
The Results: XGBoost, 1D and 2D CNNs

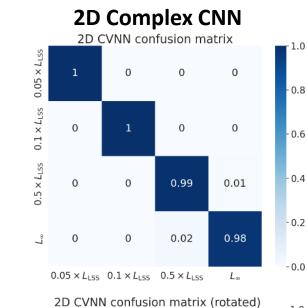




1D CNN







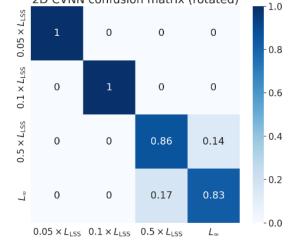
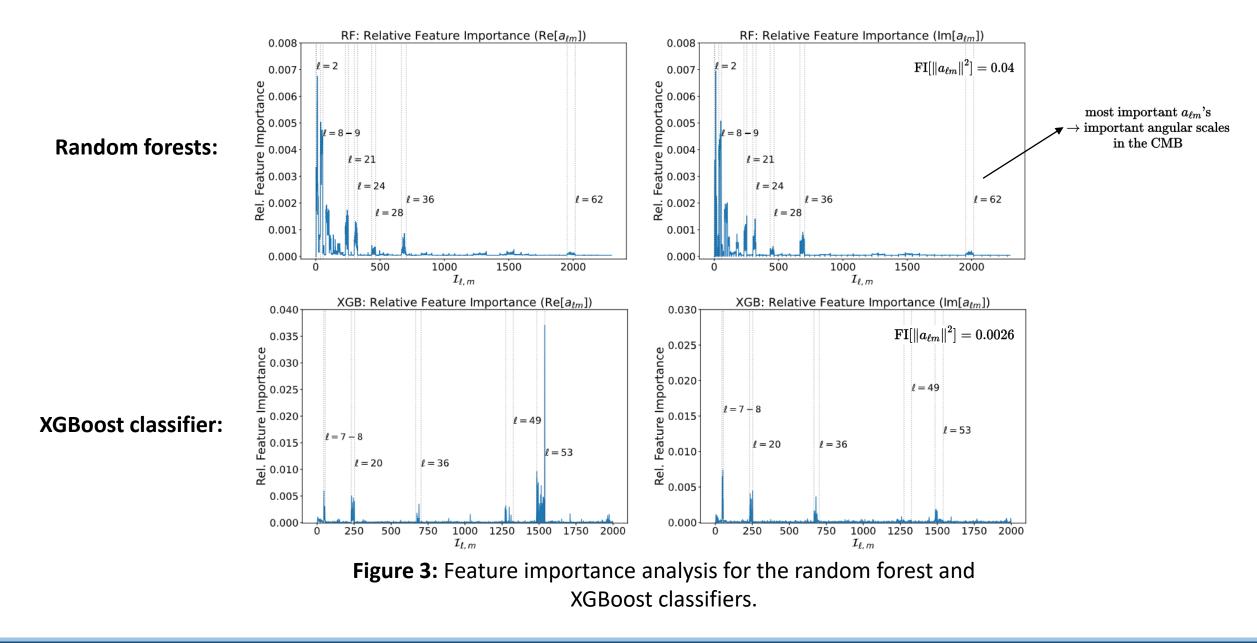
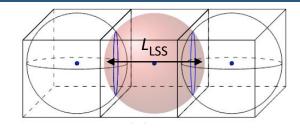


Figure 2: Harmonic space realization classification results.

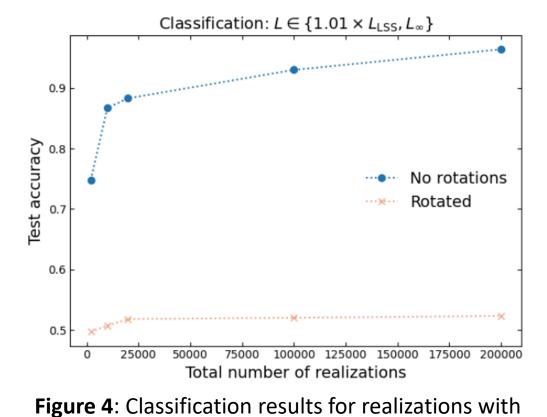
The Results: Feature Importance



The Results: $L \approx L_{\rm LSS}$



- Next challenge: classify realizations with L > LLSS.
- We expect this to be more challenging (smaller KL divergence, no circles).
- Our techniques work well on non-rotated data.
- Key challenge: classifying randomly rotated harmonic space realizations and CMB maps.



 $L \approx L_{\rm LSS}$.

Part 3: CMB Map Classification with Spherical GCNNs

- Training a CMB map classifier
- DeepSphere results
- Future avenues of research

E_1 vs E_{18} in Pixel Space

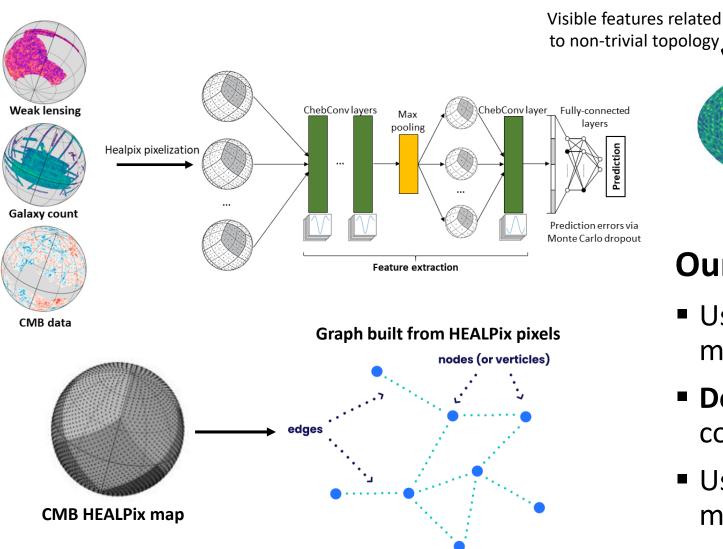


Figure 5. Top: DeepSphere: a graph-based neural network that allows applying convolutions on spherical data (Defferrard et al. 2020). Top right: E_1 topology features in a CMB map.

Our approach:

 $E_1 [L = 0.05 \times L_{\rm LSS}]$

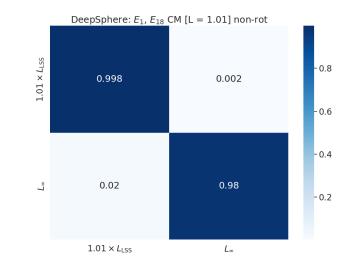
 Use temperature and E-mode polarisation maps as input.

 E_{18}

- Derivative maps (w.r.t. angular coordinates) as extra input channels.
- Use statistical layers (that apply mean/max/histogram operations).
- Explore different resolutions, Chebyshev polynomial degrees, pooling operations etc.

DeepSphere Classification Results

- Large topology classification results: 98-99% (non-rotated), 63-64% (rotated).
- As before, E-mode data is crucial.
- Listed classification accuracy requires a training dataset with 100-200k maps.
- Results depend on the map resolution and pixelordering.
- Training procedure is generally difficult finetuning of model parameters are needed.
- A key question: how to make the architecture of DeepSphere rotationally invariant?



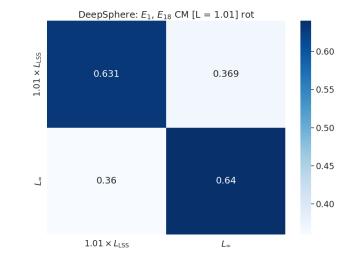


Figure 6: DeepSphere classification results for $E_1 [L = 1.01 \times L_{LSS}]$ vs. E_{18} non-rotated (**top**) and rotated data (**bottom**).

Future Avenues of Research

- Current efforts: getting to the bottom of the rotation issue.
- A high-dimensional problem results depend on:
 - Architecture of the spherical graph CNN;
 - Map resolution and pixel ordering;
 - Hyperparameters;
 - Statistical layers.
- A unique approach: employ the Al Cosmologist (arXiv:2504.03424).

The AI Cosmologist I: An Agentic System for Automated Data Analysis

Adam $Moss \square^{1*}$

^{1*}School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

Corresponding author(s). E-mail(s): adam.moss@nottingham.ac.uk;

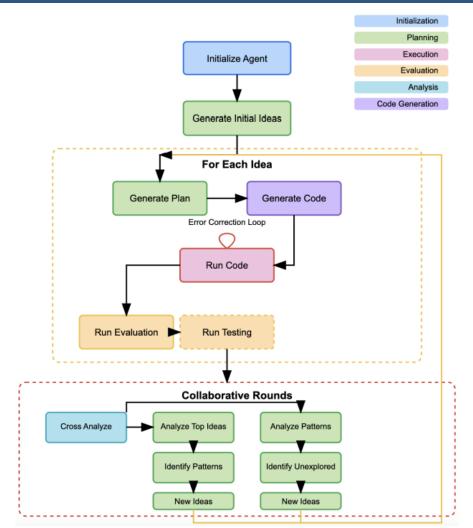
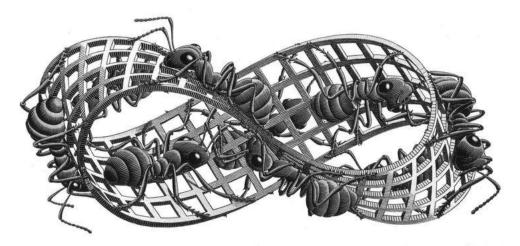


Figure 7: Pipeline of the AI Cosmologist, that employs large language model agents interacting in order to generate and test new scientific ideas and approaches.

Thank you for listening!

Summary:

- AI offers a set of valuable tools to detect signatures of non-trivial topology.
- ML can correctly classify **small** and **medium**sized maps and $a_{\ell m}$'s.
- Classifying large **randomly rotated** $a_{\ell m}$'s and maps the principle challenge.
- A promising approach: DeepSphere.
- Further avenues to explore: AI Cosmologist.



Papers:

- PRL: Promise of Future Searches for Cosmic Topology (arXiv:2210.11426)
- Limits on orientable Euclidean manifolds from circle searches (arXiv:2211.02603)
- Classification of manifolds using machine learning: a case study with small toroidal universes (arXiv:2404.01236)
- Microwave background parity violation without parityviolating microphysics (arXiv:2407.09400)

Papers

Website