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Introduction: Cosmic Topology

" Cosmic topology
" The observational signatures of cosmic topology
" Detectability of cosmic topology



Cosmic Topology

= Cosmic topology: an old problem.

= A key goal of cosmic topology: to measure the shape of the
Universe.

If we model the Universe as a manifold, what is the
topology of that manifold?

= |.e.is the Universe:
- Finite or infinite? _,
. Open or closed? Henri Poincaré : Karl Schwarzschild: multiple images of
. | ltip| d? pioneer of modern astronomical sources in a Universe with
’ Slmp y or mu tlp y_conneCte : topology non-trivial topology (1900)
- Orientable or not?
|

If the Universe is flat, 18 allowed topology classes: E,-E;4
(Riazuelo et al. 2004 and Akrami et al. 2024 for a review).
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Promise of Future Searches for Cosmic Topology

Yashar Akrami®,>" _Slcfano Anselmi ! _,4'5'6'_: Craig J. Copi ,l'f Johannes R. Eskilt ,?““ Andrew H. Jaffe®
Arthur Kosowsky A Pip Petersen ,"M Glenn D. Starkman ,l“‘"' Kevin C‘ronzﬁln’,z-(}ucsau:la,J szeng G]’.ingq'j-r,l

Deyan P. Mihaylov .! Samanta Saha,' Andrius Tamosiunas®,' Quinn Taylor,' and Valeri \/:11\(:1:1!1},‘:1!1g Albert Einstein: 1917 -- Universe William Thurston: Fields medal
(COMPACT Collaboration) as a simply-connected positively for the study of 3-manifolds
curved hypersphere (S3) (1982)
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https://arxiv.org/pdf/astro-ph/0311314.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.171501

Cosmic Topology: Observational Signatures

Clone images of astronomical sources

Pair Separation Histogram for a flat torus universe
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Introduction: Observational Signatures

20

Fundamental domain

) ) Flat torus Zb
Locations of circle (2D)

pairs with matched

Simulated finite universe

——
0.8 :
0.6 [ .
H L
n .
0.4 *nruL N
| i
[ WVWWJMW
0_2 1 1 1 I 1 1 1 | 1 1 1 | 1
20 40 60 80

PASCOS 2025, Durham University

0.5

0.3

x
LA L I ) B BB

0.2

i)
(=]




Cosmic Topology: Detectability

10°

Randomly rotated
coordinate system

Unrotated coordinate system

* Non-diagonal elements in the covariance

107!

matrix encode information about topology: 1o B =2
Cp¥.w ={ajalt,) XY c{TT,TE,TB,EE,EB,BB)} ‘g 505 Cfg—jg;
= E.g., temperature covariance matrix (Ey): N i
Transfer functions Primordial power spectrum ) i / e
2 9B 8 10 2 .5 8 10
2 2PR P
Cuntint - V5 ) 2T ) gty : : i
neN 1 n _ . ,
€ Wave Vectors/ Gkngm —e k,ln:zg?:el/'e:l (kn) . Information 'ilall?t]c‘i for cubic E;
o . : D1 (pllg
= Kullback—Leibler (KL) divergence measures the ~ e
detectability of these features: o o *
({ }) Matched-circle pairs
p a,fm 100 e .................. \
Dx1(pllq =/d Am fP\ 1\ Um 111[—] :
(pllg) {am}p({awm}) a({aem}) N 5 No circles
p({asm}) - probability of non-trivial topology 07 08 O L1 1.2 13
q({aem}) - probability of trivial topology Figure 1: temperature covariance matrix (top).

KL divergence in E; topology (bottom).
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Part 1: In Search of Cosmic
Topology with Artificial Intelligence

" The problem
" The dataset
" The algorithms




Detecting Cosmic Topology with Al

Class 1
or

Algorithm 1 |ummd Class 2

" The goal: an algorithm to classify harmonic

o asm realizations —
space realizations and CMB maps.

Class N
Class 1

or
mmmdl  Algorithm 2 i P!

= Start with a single topology: 3-torus (E,) of
different sizes (T + E data).

= Two dataset classes: rotated and non-rotated.

Comem' = QemQyy
realizations

= Algorithms to try: gy
- Random forests and XGBoost; Algorithm 3 s CI:SZZ

1D convolutional neural networks;

2D convolutional neural networks;

Complex neural networks;

GCNNs trained on spherical map data.

CMB healpix maps —

Class N

Rotating the coordinate
system (multiplying by
Wigner D-matrix)

Fundamental domain
for a given topology

ElwithLy = L, =L, = 0.05 X Ly
4 classes: Elwithl, = L, =L, = 0.1 XL
Wi = = = 0.
40,000-200,000 - ~ ° Yt LLSS
— ithLy = L, =L, = 05X
realizations ,V,VI oo . mo_ 4 5. e~ Fadoy* (B)A,(k
| Trivial topology Ly = Ly, = L, = Ly A, = t Z %€ om (k) A (K)
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The Algorithms

Algorithm 1: random forests and extreme
gradient boosting

Data Weighted Data
®e

g l @369\" i l
£ \&oo F
Q"'b
Qm
value splits
L}

Decision Tree 1
(Weak classifier)

Fitting

Decision Tree 2
(Weak classifier)

* Trained on a,,,data.

= Simple, yet powerful algorithms.

= Allow calculating feature importance
statistics.

= Random forest implementation: scikit-
learn.

= Extreme gradient boosting
implementation: XGBoost

Algorithm 2: 1D and 2D convolutional
neural networks (CNNs)

Algorithm 3: Spherical graph convolutional

neural networks

CMB temperature
- data i
Input layer Extracted feature Fully-connected Chebyshev convolution
maps layers (ChebConv) layers
5 | X e i <
- | L / e
5= o
S | Healpix oy
£ | | o pixelization ”
\ | Classification
output Fully-connected
layers
= Trained on az,;, and Cyy, 1, data. * Trained on T and E map data.

= Very powerful algorithms, but canbe  *®
difficult to train.

= 1D and 2D CNN implementations with
TensorFlow.

= Complex neural network "
implementation with CVNN.

Implementation: based on
DeepSphere (spherical graph CNNs).
Extracted features are rotationally-
equivariant.

Results depend on map resolution,
and the details of the graph CNN.
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Part 2: Classifying Topologies In
Harmonic Space with Al

= The results: XGBoost, 1D, 2D CNNs and CVNNs
" Feature importance analysis
= Results for large topologies




The Results: XGBoost, 1D and 2D CNNs
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Figure 2: Harmonic space realization classification results.
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The Results: Feature Importance

Random forests:

XGBoost classifier:

RF: Relative Feature Importance (Re[a;m])
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Figure 3: Feature importance analysis for the random forest and
XGBoost classifiers.

most important agy,’s
— important angular scales
in the CMB

Slide 8

Part 2: Feature Importance

PASCOS 2025, Durham University



The Results: L = Lygg

N s 1
)

" Next challenge: classify realizationswith L > [~~~ 7 7 " " T B
LLSS. 0.9 | e PRSI,
" We expect this to be more challenging .|
(smaller KL divergence, no circles). £ o Norotations
= Our techniques work well on non-rotated £ o7 Rotated
data. a
= Key challenge: classifying randomly rotated
harmonic space realizations and CMB maps. os}

(I) 25600 50600 ?5600 100I000 125:300 150:000 175|000 200|000
Total number of realizations

Figure 4: Classification results for realizations with
L = Liss.
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Part 3: CMB Map Classification
with Spherical GCNNSs

" Training a CMB map classifier
" DeepSphere results
" Future avenues of research




E, vs E,; in Pixel Space

Visible features related
to non-trivial topology  E, [L = 0.05 x L;s]

— =,
Weak lensing \ ChebConv layers Max (: 1ChebConvlayer__ Fully-connected
M v
pooling St layers
Healpix pixelizatlon TR 5
ol b=
= 2
en o
; . / .- |\ 4748  1sm
XY Prediction errors via
% e Monte Carlo dropout
w Our approach:

= Use temperature and E-mode polarisation
maps as input.

CMI?Jata . . .
Graph built from HEALPix pixels

nodes (or verticles)
. -

. K .
e = Derivative maps (w.r.t. angular
— coordinates) as extra input channels.
..-. ‘... .-.I.. L] L]
0 g = Use statistical layers (that apply
CMB HEALPix map L ¢ mean/max/histogram operations).
=

| i i
Figure 5. Top: DeepSphere: a graph-based neural network that Explore different resolutions, Chebyshev

allows applying convolutions on spherical data (Defferrard et al. p0|yn0m|a| degrees, pOOImg operations
2020). Top right: E; topology features in a CMB map. etc.
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https://arxiv.org/abs/2012.15000

DeepSphere Classification Results

DeepSphere: E;, E;g3 CM [L = 1.01] non-rot

0.8

" Large topology classification results: 98-99%
(non-rotated), 63-64% (rotated).

= As before, E-mode data is crucial.

1.01 x Lyss

0.6
-0.4

-0.2

= Listed classification accuracy requires a training
dataset with 100-200k maps. »

DeepSphere: E;, E;g CM [L = 1.01] rot

= Results depend on the map resolution and pixel-
ordering.

1.01 x Lyss

" Training procedure is generally difficult — fine-
tuning of model parameters are needed.

= A key question: how to make the architecture of :
DeepSphere rotationally invariant?

1.01 x Lyss Le

Figure 6: DeepSphere classification results for £, [L =
1.01 X Lygs] vs. E;g non-rotated (top) and rotated
data (bottom).
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Future Avenues of Research

= Current efforts: getting to the bottom of the | o | :;;E
rotation issue. Y —
" A high-dimensional problem —results depend | — |
O n : r For Each Idea
e Architecture of the spherical graph CNN; [ |

Error Correction Loop

* Map resolution and pixel ordering;
* Hyperparameters;
* Statistical layers.

Run Evaluation B  Run Testing

" A unique approach: employ the Al Cosmologist l
(arXiV:2504.03424). : I CollahorallveRounds' ;
: Cross Analyze Analyze Top ldeas Analyze Patterns
The Al Cosmologist I: An Agentic System for . — o e J
Automated Data Analysis [ - P \ ]

Adam Moss (D17

"School of Physics and Astronomy, University of Nottingham, Figure 7: Pipeline of the Al C05m0|0gi5t, that employs
University Park, Nottingham, NG7 2RD, UK. . . .
niversity Park, Nottingham, NG7 2R large language model agents interacting in order to
generate and test new scientific ideas and approaches.

Corresponding author(s). E-mail(s): adam.moss@nottingham.ac.uk;
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https://arxiv.org/abs/2504.03424

Thank you for listening!

Summary: Papers:
= Al offers a set of valuable tools to detect = PRL: Promise of Future Searches for Cosmic Topology
signatures of non-trivial topology. (arXiv:2210.11426)

= ML can correctly classify small and medium- . lelFs on orientable Euclidean manifolds from circle searches
(arXiv:2211.02603)

S'ZEd_m?pS and ayp,’s. = (lassification of manifolds using machine learning: a case
= C(lassifying large randomly rotated a,,,’s and study with small toroidal universes (arXiv:2404.01236)

maps — the principle challenge. = Microwave background parity violation without parity-
= A promising approach: DeepSphere. violating microphysics (arXiv:2407.09400)
= Further avenues to explore: Al Cosmologist.
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