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Motivations

1. ldentitying models with correct gauge group and particle spectrum

n 2013, a comprehensive scan revealed several million heterotic line bundle
models with

& SM gauge group
Q Three chiral families
Q No exotics

[Anderson, Constantin, Gray, Lukas, Palti, 13, JHEP]



Motivations

2. Computing physical Yukawa couplings as functions of the moduli

The ingredients for this recipe are

Holomorphic Yukawa couplings Matter field Kahler metric
Do not depend on the Ricci-flat Required full knowledge of the
CY metric compactification geometry

| |

In general cannot be done
analytically (except for very

limited cases) €3

Can be done analytically @
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Motivations

2. Computing physical Yukawa couplings as functions of the moduli

& However, recent progresses have made this possible using Machine Learning

[Constantin, Fraser-Taliente, Harvey, Lukas, Ovrut, '24, JHEP]

For illustration, the method has been applied on a specific model and it
required half a day on a single twelve-core CPU.

€3 Itis notideal for scanning over a large database of models.



Motivations

Rather than applying machine learning across millions of models, we
may ask a key question.

Given a list of models with the correct gauge group and chiral spectrum,

Is there any room in the moduli space of these models to
accommodate the SM flavour parameters?

‘ If so, what's the fraction of models that can realise this?



Outline

® Model building: heterotic line bundle models
® Search strategy
® Results

® Conclusions and outlook
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Heterotic line bundle models

Fs x Es Heterotic

l with vector bundle over it and structure group
5

CY th@reefold Vo @ﬁa . G—=29 (U(1)5)

/ a=1 l

is a sum of line bundles
leads to
G x SU(5)
GUT-type theory
Use this global symmetry to impose constraints on
the possible operators present in the theory. l

broken down to
This provides a stringy Froggatt-Nielsen mechanism  [@==(G)x SU(3) x SU(2) x U(1)
to get the observed quark and lepton masses via Wilson line choice




Heterotic line

Field content:

bundle models

Yukawa couplings:

')
ec_I_ed

107

field| SM rep name SU(5) |G charge pattern YZ’;‘({¢}’ {®},{O(1) coeffs.}) H'. _y, 102(; 10£d
| G| R | | VE({0}, 18}, {0(1) coefis}) HE ., 3
e (1,1)s RH electron
d | (3,1) RH d-quark 5 e, + e
L | (1,2)_3 LH lepton
H*| (1,2)_3| down-Higgs 5H e, + e
H" | (1,2)3 up-Higgs 51" —€, — €
¢ | (1,1)o pert. moduli 1 €, — €
®; | (1,1)0 |non-pert. moduli|| 1 (ki,...,ks)
e = (1,0,0,0,0)
Charges are defined as and (ki, o k%) are integer coefficients that have to do with the line bundle sum

e; = (0,0,0,0,1)
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Field content:

bundle models

Yukawa couplings:

field| SM rep name SU(5) |G charge pattern - -
}/?:;L({¢}7 {(I)}7 {O(]‘) Coeﬂs'}) nga_bb ]'Ozec ]‘Oéd
Q| (3,2): LH quark 10 €a
v | (3,1)-4| RH u-quark
e | (1,1)e RH electron Must be ¢ — invariant
d | (3,1) RH d-quark 5 e, + e
L | (1,2)_3 LH lepton l
H*| (1,2)_3| down-Higgs 5H e, + €
u - h u q) — - —
H| (1,2)s | upHiggs || 57" | —e.—e g-charge (Yi5(10),19})) = €a & — e — e
¢ | (1,1)o pert. moduli 1 €, — €
®; | (1,1)0 |non-pert. moduli|| 1 (K%, ..., k%)
e; = (1,0,0,0,0)
Charges are defined as and (ki, o k%) are integer coefficients that have to do with the line bundle sum

e; = (0,0,0,0,1)
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Strategy

}Q?({¢},{<I>},{O(1) coeffs.}) HY, _y. 10i 10gd

e Fill both Yukawa matrices with allowed insertions p p ;
Y;j({¢}7 {(I)}7 {0(1) COeffS.}) H o+byg 5ec—l—e ]'Oee

As an illustrative example, the up-type Yukawa matrix can take the tform

¢2;5¢5,2 L ¢2,5¢§,2 - - - ¢%75¢572 —+ ..
Yzfl; — ¢2,5¢:§,2 = i ¢572 1 ... ¢275 I
P35¢s52+ -+ a5t 0

¢ Find numerical value for VEVs and o(1) coeffs such that the observed quark and lepton masses

can be reproduced along with the CKM matrix
(HYY" = (UM diag(m.,, me, my) (V)T
Assign VEVs {ﬁz,@ = 0.3, ﬁ2’5> = 0.1, } (HHY® = (U diag(mg, ms, mp) (VT
p p HYY® = (U diag(m. -) (V)T
to induce effective Yukawa couplings such that ) (%) diag(me, my., me) (V7)
(UTUY = CKM
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Sticking with the previous example, this term can take the form

po= p({o}, {HHH" = [(¢2,5¢5,2T+ HH

To avoid the py-problem, all these
insertions have to be suppressed down
the the EW scale

A BUT this may kill Yukawa matrices.
Indeed, in our example

Go )52+ - D2 ¥sot o Pis¥at One option to suppress the leading

y@,}b — ¢2,9¢§,2 1. P50+ - - - ¢2x+ . Mew
2 N

AMorat- o Mot : ST

insertions is setting (¢ 5)




Strategy

e Control the p-term at the same time

Sticking with the previous example, this term can take the form

po= p({o}, {HHH" = [(¢2,5¢5,2T+ HH

To avoid the py-problem, all these
insertions have to be suppressed down
the the EW scale

A BUT this may kill Yukawa matrices.
Indeed, in our example

Go )52+ Do it DrsPet One option to suppress the leading
Y}ff — ¢2,w:§,2 B

... ¢52__... ¢2x_|_... M
; EW

3zt Mot 0 M
comp

Insertions Is setting (g2 5) —

ﬁ It seems tricky to accomplish

without altering Yukawa matrices
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Results

¢ We scanned over ~200 inequivalent single Higgs models analysed in
[Anderson, Gray, Lukas, Palti, 2011, PRD]

® \We have found two models that can potentially realise realistic quark and
lepton masses, CKM matrix and light Higgs.

e Both are constructed on X4770/Z> but with different line bundles on it.



Results: first model on X477 /%7

® Down spectrum

Matter

(Qa ua 6)61 ) 2 (Qa ua 6)627
(dv L)e1+e2, (da L)el +es5) (dv L)ez-l-es

Higgs

U d
H—e]_ —e9) He1 +eo

Modulz

P1,2 1= Pe;—eyy  4P2,1 =4 Pey—e;

491,3 : =4 Pe;—e3; 3P5,1 = 3 Pes—e;;

2023 :=2¢ey—ez, [ P2,5 := 1 Pey—es

®; = CI’(1,0,0,0,—1), Oy 1= (I)(—2,1,1,O,0)7

P3 :=D0,1,0,—-1,0), Psa:=P0,-2,0,1,1),
®5 := P0,0,—1,1,0)

e VEV assignments

($1,2)=(P2,5)=0.7, (P1)=(P2)=(®4)=(P5)=0.07.

(®3), (¢2,1), (b1,3), (#5,1), (¢2,3) = O(Mew/Mcur) ,

Y’U,

Yd

e Yukawas

0 1

I @912 @12
L @12 @10

DDy + .

@2@4@51,2 T ...

1

(I)QCI)4Q51,2 T ...

O5D507 5 +
O5D507 5 +
O5D507 5 +

O5D507 -
P3D507 5 -
O5D507 5 -




Results: first model on X477 /%7

¢ Down spectrum e Yukawas
Matter (Q,u,€)e;, 2(Q,u,e)e,,
(da L)e1+e2, (dv L)e1—|-e5, (da L)ez-l-es Yu ? ¢1 ¢1
Higgs H%¢ _e,, Hgl+e2 — . ¢1,z ¢172
¢1,2 .= ¢e1—e27 4¢2,1 .= 4¢ez—e17 ’ ,
4¢13::4¢el—e3, 3¢51 ::3¢e5—e1, 2 2 2 3
. ’ ’ O,y + ... O5P + ... P3P + ...
Moduli 2023 = 2@ey—e3, (P25 : =T Pey—es vd By 4 @%@52;)72 @%@52}1,2
L L — oPsPD1 9 T ... T ... T ...
P :=P1,0,0,0—-1) P2 :=P(—21,1,0,0); By - CID%(I)5¢;”2 N CID%CI)5¢41172 N
(1)3 = @(0,1,0,_1,0), (I)4 . — (I)(O,—2,O,1,1)7 2*4 1,2 ) 5 1’2 9 5 1,2
®5 := P0,0,—1,1,0)

¢ Quark and lepton masses reproduced

e VEV assignments within experimental error (deviations less
than 1%)
(h1,2)=(02,5)=0.7, (P1)=(D2)=(P4)=(P5)=0.07.

(®3), (¢2,1), (b1,3), (#5,1), (¢2,3) = O(Mew/Mcur) ,
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® Down spectrum

Matter (Q,u,€)e;, 2(Q,u,e)e,,
(da L)e1+e2, (dv L)el +es5 (da L)ez-l-es
Higgs H%¢ _e,, Hgl+e2

P1,2 = Per—eqs  4P2,1 =4 Pey—e;;
4@51,3 = 4¢el—e3, 3¢5,1 = 3¢e5—e17
Modulz 2023 =2@ey—e3, (P25 : =T QPey—es

P, = q’(1,0,0,0,—1), Oy = (I)(—2,1,1,0,0)7
P3 :=D0,1,0,—-1,0), Psa:=P0,-2,0,1,1),

Q5 1= (I)(O,O,—l,l,O)

e VEV assignments
($1,2)=(P2,5)=0.7, (P1)=(P2)=(®4)=(P5)=0.07.

(®3), (¢2,1), (b1,3), (#5,1), (¢2,3) = O(Mew/Mcur) ,

e Yukawas

0 1 1
Y = 1|1 ¢1,2 ¢1,2
1 €b1,2 ¢1,2
Oo®y+... DPID50%,+... PIPs5¢3, + ...
Y= | ®2Pupro+... P3P503,+... P3P507,+ ...
Oo®yhr o+ ... PID5¢5,+ ... DPIP507, + ...

¢ Quark and lepton masses reproduced
within experimental error (deviations less
than 1%)

¢ CKM matrix within a 10% average deviation



Results: first model on X477 /%7

® Down spectrum

Matter (Q,u,e)e;, 2(Q,u,e)e,,
(da L)el-l-ezv (da L)el +es5 (da L)62+e5
Higgs H%¢ _e,, Hgl+e2

?1,2 = Peq—eq) d¢21 =4 Pey—e
4@51,3 = 4¢el—e3, 3¢5,1 = 3¢e5—e17
Modulz 2023 =2@ey—e3, (P25 : =T QPey—es

P, = @(1,0,0,0,—1), by 1= (I)(—2,1,1,0,0)7
P3 :=D0,1,0,—-1,0), Psa:=P0,-2,0,1,1),

¢5 - = ¢(O?Oa_]—)1a0)

e VEV assignments
($1,2)=(P2,5)=0.7, (P1)=(P2)=(®4)=(P5)=0.07.

(®3), (¢2,1), (b1,3), (#5,1), (¢2,3) = O(Mew/Mcur) ,

Y’U,

Yd

e Yukawas

0 1 1
L @12 ¢1,2
L @12 @12

Body + ...  DID5P7 5+ ... DID5T, + ..
BoDypr o+ ... DID5¢3 5+ ... DPIB5eT, + ..
BoyDypr o+ ... DID5¢3 5+ ... DPIBseT, + ..

Quark and lepton masses reproduced

within experimental error (deviations less
than 1%)

CKM matrix within a 10% average deviation

p-term at the electroweak scale
w=a¢21012+ ¢12025051 + ... ~ O(Mgw/MguT)



Summary

e Extracted ~200 inequivalent single Higgs heterotic line bundle models from the “202 list”
produced in [Anderson, Gray, Lukas, Palti, 11, PRD]

® Scanned their moduli space looking for regions that can accommodate realistic flavour
parameters while avoiding the p problem.

® Result—> only ~1% of the models can satisfy these constraints.

Next steps

O Scan over larger lists asking for realistic neutrino physics and other phenomenological
features.

O Provide a mechanism to stabilise the moduli and use ML to actually compute all the
involved parameters at the stabilised points.
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