

Similarities in the evaporation of saturated solitons and black holes

¹GC, Dvali, Sakhelashvili 2025 (to appear)

Giacomo Contri with Gia Dvali and Otari Sakhelashvili¹

Are black holes unique?

In this talk, we'll discuss how to properly frame the question and study a specific example

¹Dvali, 2019, 2021

Giacomo Contri

Black holes

- Area law entropy $S = \frac{A}{L_P^2}$
- Thermal evaporation rate $T \sim \frac{1}{R}$
- Classical horizon
- Information retrieval time: $t \sim SR$

¹Dvali, 2019, 2021 ²Dvali Sakhelashvili 2021, Dvali Valbuena Kaikov 2021, Dvali Venogupalan 2021

Giacomo Contri

Black holes

- Area law entropy $S = \frac{A}{L_P^2}$
- Thermal evaporation rate $T \sim \frac{1}{R}$
- Classical horizon
- Information retrieval time: $t \sim SR$

¹Dvali, 2019, 2021 ²Dvali Sakhelashvili 2021, Dvali Valbuena Kaikov 2021, Dvali Venogupalan 2021

Giacomo Contri

Saturons¹

•
$$S = L^{(d-2)} f_{poincare}^2$$

Black holes

- Area law entropy $S = \frac{A}{L_P^2}$
- Thermal evaporation rate $T \sim \frac{1}{R}$
- Classical horizon
- Information retrieval time: $t \sim SR$

¹Dvali, 2019, 2021 ²Dvali Sakhelashvili 2021, Dvali Valbuena Kaikov 2021, Dvali Venogupalan 2021

Giacomo Contri

•
$$S = L^{(d-2)} f_{poincare}^2$$

• Evaporation rate $\Gamma \sim \frac{1}{L}$

Classical Information horizon

• $t \sim SL$

Black holes

- Area law entropy $S = \frac{A}{L_P^2}$
- Thermal evaporation rate $T \sim \frac{1}{R}$
- Classical horizon
- Information retrieval time: $t \sim SR$

Black holes are one instance of the broader universality class of saturons²

²Dvali Sakhelashvili 2021, Dvali Valbuena Kaikov 2021, Dvali Venogupalan 2021 ¹Dvali, 2019, 2021

Giacomo Contri

The unifying principle is saturation of unitarity¹: $S \leq \alpha$

A model of a saturon

• The model¹:
$$\mathcal{L} = \frac{1}{2} \operatorname{tr} \left[\left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) \right] - V[\phi]$$

$$V[\phi] = \frac{\alpha}{2} \operatorname{tr} \left[\left(f\phi - \phi^2 + \frac{I}{N} \operatorname{tr} \left[\phi^2 \right] \right) \right]$$

• We study the large-N limit of the 1+1 dimensional theory

A model of a saturon

• The model¹:
$$\mathcal{L} = \frac{1}{2} \operatorname{tr} \left[\left(\partial_{\mu} \phi \right) \left(\partial^{\mu} \phi \right) \right] - V[\phi]$$

$$V[\phi] = \frac{\alpha}{2} \operatorname{tr} \left[\left(f\phi - \phi^2 + \frac{I}{N} \operatorname{tr} \left[\phi^2 \right] \right) \right]$$

- We study the large-N limit of the 1+1 dimensional theory
- The model admits SU(N)-charged bubbles with internal rotation with frequency ω : $\phi_{bubble} \sim e^{-i\omega tT_a} \phi(r) e^{i\omega tT_a}$
- The scale of Poincaré symmetry breaking is $f_{Poincare}^2 = (mL)^2 f^2$

Thin-wall bubbles

•The occupation numbers are: $N_g \sim \phi_0^2 L \omega - N_\phi \sim \phi_0^2$

¹Dvali, Kaikov, Valbuena 2021

Giacomo Contri

$$S \ll f^2$$

¹Dvali, Kaikov, Valbuena 2021

•The entropy of the bubble comes from the combinatorics of Goldstones¹:

$$\ldots \rangle$$

•At saturation the `t Hooft coupling becomes $\ \lambda := rac{N}{f^2} \sim 1$

$$S = f^2 = N = L^{(d-2)} f_{poincare}^2$$

$$S \ll f^2$$

Saturon evaporation

Can we reproduce the

• To allow the bubble to decay, we can couple it to a massless fermionic field

$$\mathcal{L} = \mathcal{L}_{\phi} + i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - g\bar{\psi}^{\alpha}\phi_{\alpha\beta}\psi^{\beta}$$

• This opens up a decay channel through pair creation:

$$\Gamma = \frac{1}{R}$$
 evaporation rate¹?

Saturon evaporation

• To allow the bubble to decay, we can couple it to a massless fermionic field

$$\mathcal{L} = \mathcal{L}_{\phi} + i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi - g\bar{\psi}^{\alpha}\phi_{\alpha\beta}\psi^{\beta}$$

This opens up a decay channel through pair creation:

saturated bubbles

¹GC, Dvali, Sakhelashvili 2025

We studied the evaporation both semiclassically and quantum mechanically, for thin and thick-wall

- Semiclassical approach: quantization of the fermionic field in the bubble background
- The fermions get a space and time dependent mass term from the interaction: $g\bar{\psi}\phi_{bubble}(r,t)\psi$

- Semiclassical approach: quantization of the fermionic field in the bubble background
- The fermions get a space and time dependent mass term from the interaction: $g \bar{\psi} \phi_{bubble}(r,t) \psi$
- Nontrivial mixing between ladder operators at different times gives the rate of particle creation:

 $a_k^{(incoming)} = \alpha a_k^{(outgoing)} + \beta a_k^{\dagger(incoming)}$

- Semiclassical approach: quantization of the fermionic field in the bubble background
- The fermions get a space and time dependent mass term from the interaction: $g \bar{\psi} \phi_{bubble}(r,t) \psi$
- Nontrivial mixing between ladder operators at different times gives the rate of particle creation:

$$a_k^{(incoming)} = \alpha a_k^{(outgoing)} + \beta a_k^{\dagger(incoming)}$$

Thin-wall

0

Weak fermion coupling:
$$\Gamma = \frac{g^2 \phi_0^2 (2L\omega \text{SinInte})}{2}$$

Fermion Coupling at saturation $\beta := \frac{g^2 N}{\alpha f^2} \sim 1$: $\Gamma = \omega \tanh^2 (Lg\phi_0)$

Giacomo Contri

Pascos-24/07/2025

- Semiclassical approach: quantization of the fermionic field in the bubble background
- The fermions get a space and time dependent mass term from the interaction: $g \bar{\psi} \phi_{bubble}(r,t) \psi$
- Nontrivial mixing between ladder operators at different times gives the rate of particle creation:

$$a_k^{(incoming)} = \alpha a_k^{(outgoing)} + \beta a_k^{\dagger(incoming)}$$

Thin-wall

0

Weak fermion coupling:
$$\Gamma = \frac{g^2 \phi_0^2 (2L\omega \text{SinInte})}{2}$$

Fermion Coupling at saturation $\beta := \frac{g^2 N}{\alpha f^2} \sim 1$: $\Gamma = \omega \tanh^2 (Lg\phi_0)$

Giacomo Contri

Saturon evaporation: the quantum picture

- *φ*(r) particle-antiparticle pair. $\boldsymbol{\theta}$ Ψ suppressed by the finite penetration length.
- We can understand the bubble evaporation as a quantum process • Recall: the bubble is made of $N_g \sim \phi_0^2 L \omega$ Goldstones of energy ω • The main decay process is the decay of a Goldstone particle θ in a The Goldstone particle is localized inside the bubble. • The fermions get a mass inside the bubble: for $m_\psi > \omega$ the rate is

Saturon evaporation: the quantum picture

- We can understand the bubble evaporation as a quantum process
- Recall: the bubble is made of $N_g \sim \phi_0^2 L \omega$ Goldstones of energy ω
- The main decay process is the decay of a Goldstone particle θ in a particle-antiparticle pair.
- The Goldstone particle is localized inside the bubble.
- The fermions get a mass inside the bubble: for $m_{\psi} > \omega$ the rate is suppressed by the finite penetration length.

$$\Gamma_{single} \sim \begin{cases} \frac{g^2}{\omega} \frac{1}{m^2} \frac{\omega}{L} & m_{\psi} \gg 1/L \\ \frac{g^2}{\omega} (\omega L) & m_{\psi} \ll 1/L \end{cases} \quad \Gamma_{tot}^{(sat)} = \Gamma_{single} \end{cases}$$

Conclusions

- We studied a 1+1 dimensional example of a Saturon
- All the investigated properties match with the general features of saturation
- In particular, saturated bubbles evaporate with a $\Gamma \sim rac{1}{L}$ rate.
- Full correspondence with black-holes

Thankyou

Bubble profile details

• The bubble solution in detail is given by:

$$\Phi_{\alpha}^{\beta} = \left(U^{\dagger}VU\right)_{\alpha}^{\beta}$$
$$U = \exp\left[-i\theta^{a}T^{a}\right]$$

$$V = \frac{\phi(x)}{\sqrt{N(N-1)}} \operatorname{diag}((N-1), -1, \dots, -1).$$

• Where ϕ is obtained as a bounded solution of the effective potential $\mathcal{V}(\phi) = \frac{1}{2}\phi^2 \left(\omega^2 - \alpha(\phi - f)^2\right)$

Saturons and Unitarity

- The connection between Saturons and unitarity can be understood in terms of $2 \rightarrow N$ processes.
- $2 \rightarrow N$ processes are usually (non-perturbatively) exponentially suppressed $\sigma_{2\rightarrow N} \sim e^{-N}$
- Reason: truncation of the perturbative series at the self-susteinability point: $N = \frac{1}{\alpha}$
- The saturon's entropy exactly compensates for this suppression, giving rise to O(1) probability of production: $\sigma_{tot} \sim e^S e^{-N} \sim e^{1/\alpha} e^{-1/\alpha} \sim 1$

Counting the entropy

• The bubble is resolved as a multiparticle state:

$$|sol\rangle = e^{\int d\mathbf{k} \sum_{j=1}^{N} \sqrt{n_j(\mathbf{k})} \left(\hat{a}_j(\mathbf{k})^{\dagger} \right) |0\rangle}$$

- We can count the entropy in two ways:
- 1) As discussed above, through the combinatorics of Godstone's constituents: $N_g \sim \phi_0^2 L \omega \qquad \sum_a^{2N} n^a = N_g \qquad | \ state \rangle = \left| n_{\omega}^1, n_{\omega}^2, \dots \right\rangle$ The combinatorics gives: $S \sim 2N \ln \left[\left(1 + \frac{2N}{N_g} \right)^{\frac{N_g}{2N}} \left(1 - \frac{N_g}{N_g} \right)^{\frac{N_g}{2N}} \right]$ 2)We can see the bubble as composed as N_q asymptotic representation:
- The multiplicity is the dimension of the totally simmetric representation of N_g copies of SU(N).
- Both method give the same answer, given in the above slides

$$+\frac{N_g}{2N}
ight)$$
 ptotic quanta, transforming into the adjoint

Details on the radiation spectrum

- Semiclassically, we can obtain the full spectrum.
- As a series expansion in $g\phi_0/\omega$:

$$\rho_{\epsilon} = \frac{g^2 \phi_0^2 \sin^2(2L\epsilon)}{4\epsilon^2}$$

- Energy peaked at $\,\omega$
- Democratic in particle-anti particle, flavour is conserved
- Cutoff at energy ω from charge conservation: $N \to 2$ is not only exponentially suppressed, but forbidden

Information Horizon and classical limit

- There are different views that one can take in analyzing the saturon
- Semi-classical limit: $f^2 \sim N \to \infty$ $\frac{\alpha}{m^2} \sim \frac{g^2}{m^2} \sim \frac{1}{N} \to 0$ $m^2 \sim \alpha N = \text{finite}$
- The (individual) Goldstone coupling $\alpha_G \sim \frac{m^2}{E^2 f^2} \rightarrow 0$ vanishes
- One cannot resolve any non-classical difference between patterns $\sum_{\alpha}^{a} n^a = N_g$ $|state\rangle = |n_{\omega}^1, n_{\omega}^2, ...\rangle$
- Large but finite N: quantum effects like the resolution of non-macroscopically different patter emerge as $\frac{1}{N}$ effects
- The retrival rate is $\Gamma_{\text{Gold}} \sim \alpha_G^2 m N_G \sim \frac{1}{Rf^2} \sim \frac{1}{SR}$