Non-Abelian Domain walls

Bowen Fu (付博文) 24 July 2025 The 30th International Symposium on Particles, Strings and Cosmology (PASCOS 2025)

NORTHEASTERN UNIVERSITY

Based on **BF**, S. F. King, L. Marsili, S. Pascoli, J. Turner, Y-L Zhou, 2409.16359

Domain walls

Domain wall formation

Kibble mechanism: Z_2 - a simplest case $V(\phi) = -\frac{1}{2}\mu^2 \phi^2 + \frac{1}{4}\lambda \phi^4$ $\langle \phi \rangle = \pm v \qquad v = \sqrt{\mu^2 / \lambda}$ V ϕ

Domain wall formation

 $\frac{\partial^2 \phi}{\partial z^2} = \frac{\partial V}{\partial \phi}, \quad \phi(\pm \infty) = \pm v$ $\phi(z) = v \tanh \frac{z}{\Delta}$ $\Delta = \sqrt{\frac{2}{\lambda v^2}}$

Domain wall formation

Discrete Symmetries

• Abelian: Z_n

• Non-Abelian: $A_n, S_n, \Delta(27)$

Roles: flavour symmetries, dark matter, ...

S₄ domain walls

S_4 scalar theory

The octahedral/cube group S_4 : •

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$$

The most general renormalisable flavon potential: •

$$V(\phi) = -\frac{\mu^2}{2}I_1 + \frac{g_1}{4}I_1^2 + \frac{g_2}{2}I_2$$
$$I_1 = \phi_1^2 + \phi_2^2 + \phi_2^2 \qquad I_2 = \phi_1^2\phi_1$$

$$l_1 = \phi_1^2 + \phi_2^2 + \phi_3^2,$$

$$\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, \quad U = \pm \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Ishimori, etc 1003.3552

 $I_2 = \phi_1^2 \phi_2^2 + \phi_2^2 \phi_3^2 + \phi_3^2 \phi_1^2$

S_4 vacuum structure

$\left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\0 \end{pmatrix} \right\} v$

 $\overline{g_1}$

 $\overline{\phi}_i = \frac{\varphi_i}{\Phi_i}$

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

 $g_2 > 0$

S_4 vacuum structure $\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\-1 \end{pmatrix} \right\} u \right\}$

 $\sqrt{3g_1 + 2g_2}$

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

S₄ domain walls

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

S_4 domain walls ϕ_1 $_{-1}$ v_1 v_4 0 v_3 v_4 v_5 v_2 $\overline{\phi}_{3\ 0}$ v_1 v_6 —1 -1 0 $\overline{\phi}_2$ $ilde{\phi}_1$ $ilde{\phi}_1$ u_5 u_1 -1-10 0 u_8 u_8 u_3 u_3 u_1 ${ ilde \phi}_{3\ 0}$ $ilde{\phi}_{3\ 0}$ u_5 u_5 u_7 u_6 u_6 u_4 -1-1_____ —1 0 0 ϕ_2 ϕ_2

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

Straight line SI solution Independent of $\beta = g_2/g_1$

Two SIII solutions with

pitstop at v_2

Intermediate solution (still satisfies EoM)

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

$\beta \ll 2 : \sigma(SI) > 2\sigma(SII)$

SI DW unstable & would decay to SII

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

$\beta \gg 2 : \sigma(SI) < 2\sigma(SII)$

SII DW unstable & would decay to SI

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

16

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

For $\beta = 0.3$, the SI-type DW will decay to two SII type DWs

17

Gravitational waves

Gravitational wave from DWs

• Exact discrete symmetry \implies stable DWs

• Bias \implies unstable DWs

 $V_{\text{bias}} \equiv V(v_2) - V(v_1)$

Saikawa 1703.02576

Pressure difference $\Delta p \propto V_{\rm bias}$

 $\Omega_{\mathrm{GW}}^{\mathrm{peak}}\left(\sigma,V_{\mathrm{bias}}\right)$

 $\int f > f_{\text{peak}}, \Omega_{\text{GW}} \propto f^{-1}$ $f < f_{\text{peak}}, \Omega_{\text{GW}} \propto f^3$

BF, S.F. King, L. Marsili, S. Pascoli, J. Turner, Y-L. Zhou, 2409.16359

ϵ_{13}^v	ϵ_{14}^v	ϵ_{15}^v	ϵ_{16}^v	ϵ_{12}^u	ϵ^u_{13}	ϵ^u_{14}	ϵ^u_{15}	ϵ^u_{16}	ϵ^u_{17}
$3\hat\epsilon$	$\hat{\epsilon}$	$4\hat{\epsilon}$	$5\hat{\epsilon}$	$2\hat{\epsilon}$	$4\hat{\epsilon}$	$6\hat{\epsilon}$	$\hat{\epsilon}$	$3\hat{\epsilon}$	$5\hat{\epsilon}$

Summary and Outlook

- Non-abelian DWs have more interesting and nontrivial structure and phenomena
- In certain range of parameter space, unstable DWs can show up
- If the DWs are stable, they can give rise to a unique multi-peak GW signal
- The signature of GW raised by unstable domain walls is still unexplored

