

The XLZD liquid-xenon Observatory and the DARWIN R&D programme

Yanina Biondi, PASCOS in Durham, 24 July 2025

Dark matter searches with Liquid Xenon TPCs

Most science data acquisition schedule to finished ~2027-2028... what then?

Dark matter searches with Liquid Xenon TPCs

Most science data acquisition schedule to finished ~2027-2028... what then?

The XLZD Observatory

- -3 m diameter x -3 m height
- Phased approach following xenon procurement to increase to a 80 t active mass detector
- Drift field of 240-290 V/cm and extraction field of 6-8 kV/cm for optimal discrimination

Candidate locations: LNGS, BOULBY, SNOLAB, SURF

Dark matter searches with Liquid Xenon TPCs

Dark Matter

WIMPs Sub-GeV Inelastic Axion-like particles Planck mass Dark photons

<u>Supernovae</u>

Early alert Supernova neutrinos Multi-messenger astrophysics

arXiv:2410.17137v2

Neutrino nature

Neutrinoless double beta decay Neutrino magnetic moment Double electron capture

Sun

pp neutrinos Solar metallicity ⁷Be, ⁸B, hep

Longstanding R&D effort with ~200 members from 35 institutions in Europe, USA, Asia, Australia

- New collaboration to build & operate next-generation detector
- Consortium meetings at KIT (2022), UCLA (2023), and Rutherford Lab (2024)
- Collaboration meeting at LNGS (2025)
- Design book submitted to publication

XZLD reach in the WIMP parameter space

Reaching the 'neutrino fog', after that, sensitivity gets limited by CEvNS

Neutrinoless double beta decay

Access to this channel through the natural abundance of ¹³⁶Xe (~8.9%)

Cosmogenically created 137 Xe is a potential background

Solar neutrinos: neutrino-electron scattering

- Constrain low-energy survival probability to 5%
- Independent measurement of the weak mixing angle
- Prove neutrino-electron non-standard interactions

Low-energy range not previously explored

Core collapse supernova

Neutrino emission from core collapse supernova

Large scale demonstrators

Photosensors

- Baseline design consists of 3" PMTs, but other options are being explored
- Characterisation of Square 2" PMTs \rightarrow lower buoyancy and sub-ns rise time
- New VUV SiPM development reduced DCR of VUV4 SiPM by a factor of ~7
- VUV Setup (@ LXe temperature / Vacuum)
- Absolute QE measurement including position dependence using 2D linear stage under vacuum at LXe temperature
- Digital SiPMs development for DARWIN (high fill factor, cold electronics, low dark count)

Xenon cleanliness

R&D for xenon purity levels that allow exploring the neutrino fog

- \blacksquare ⁸⁵Kr distillation \rightarrow goal of 0.1 ppt natKr already achieved < 0.026 ppt
- ²²²Rn distillation column → goal of 0.1 μ Bq/kg (achieved 0.8 μ Bq/kg) below ER from solar pp neutrinos
- Cryogenic Xe distillation system with novel heat pump concept
 - Rn removal and quasi loss-less ⁸⁵Kr removal system and impurity monitoring
- Radon emanation suppression by surface coating

Eur. Phys. J. C (2017) 77:275 Eur. Phys. J. C (2022) 82:1104

XLZD Electrodes

Production and quality assessment of >3m electrodes in air, vacuum and gas argon

- Design, production, quality testing and repair of electrodes:
 - Stretching, sagging and flatness of meshes
 - Diagnostic of defects and reparation with laser welding
 - Electrode surface treatment and coating
 - Study electron and photon emission
 - 2D scanning system of 1.5 m and soon 3 m grids
 - Detect glow in gAr indicating defects in mesh diagnostics: optical imaging

Liquid xenon properties and high voltage

Henry solubility
$$\frac{H_s^{cc}}{L_g^c} = \frac{c_l}{c_g}$$

Diffusion law $\frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left(\mathbf{D}_{\mathbf{z}\mathbf{z}} \frac{\partial c}{\partial z} \right)$

- Power supply of up to -200 kV to bias the cathode
- Diagnostics of HV components (feedthrough, electrodes, couplings)
- Monitoring of systematics: effects of purity, surface, pressure...
- **SiPMs** to monitor cathodic emissions, luminescence, electron trains
- **Camera** for monitoring of discharges
- Studies with tritium solubility, calibration and removal, and permeation studies of tritium in SS

Liquid xenon time projection chamber hosting up to 80 kg at KIT

Conclusions and outlook

- XLZD (XENON-LZ-DARWIN): New international collaboration to build and operate a 60- to 80 tonne scale LXe TPC
- DARWIN: Active R&D collaboration for next generation LXe TPC for WIMP direct detection down to the neutrino fog
- TPC of ~3 m dimensions and 60/80 tonne of active mass
- Reaching the neutrino fog, but exciting physics available!
- Rich R&Ds program to tackle the technical challenges

