Search for Baryogenesis and Dark Matter in B-meson decays at BABAR

PASCOS-2025, Durham July 24, 2025

Yury Kolomensky yury@physics.berkeley.edu

On Behalf of the BABAR Collaboration

Special thanks to Sophie Middleton and Tim Gershon for slide material

BaBar dataset: 431 fb⁻¹ recorded at $\Upsilon(4S)$ (470 BB pairs)

Rich physics program: CP violation, flavor mixing, rare decay searches and measurements Hermetic detector with excellent PID allows accurate reconstruction of missing mass

Matter-Antimatter Asymmetry

- Abundances of visible and dark matter are two of the great cosmological puzzles
- Need CP violation, baryon number violation, and out-ofequilibrium processes to create matter-antimatter asymmetry from a symmetric early Universe
- Standard Model effects do not generate enough matterantimatter imbalance observed today
- Standard Model does not explain dark matter abundance either

Perhaps one can solve these two problems simultaneously ?
 One of the ingredients (CP violation) already observed in B decays

ИНЕ СР-ИНВАРИАНТНОСТИ: С-АСИММЕТРИЯ Арионная асимметрия вселенной

Baryogenesis through Exotic B Decays

G. Elor, M. Escudero, and A. E. Nelson, PRD 99, 035031 (2019). G. Alonso-Alvarez, G. Elor, and M. Escudero, PRD **104**, 035028 (2021).

B-Factories are an ideal place to look for these signatures

Baryogenesis through Exotic B Decays

- Kinematic constraints require that ψ_D mass is in [0.94-4.34] GeV
- Would like to explore couplings to 1st and 2nd generations: $O_{i,j} = (\psi_D b) (q_i q_j) (i = u, c \text{ and } j = d, s)$
- One dominant operator expected (flavor constraints)

BABAR I	∆M (MeV/c²)	Operators	Final State	Initial State
Phys.Rev.D 107 (4163.95	0 _{us}	$\psi_D + \Lambda$	B ⁰
Phys.Rev.Lett. 13	4341.05	O_{ud}	$\psi_D + p$	B^+
Phys.Rev.D 111	2992.86	0 _{cd}	$\psi_D + \Lambda_c^+$	B+
	2810.36	O_{cs}	$\psi_D + \Xi_c^+$	B^+

ays -4.34] GeV tions:

Results

2023) 9, 092001

<mark>1 (2023) 20, 201801</mark>

l (2025) 3, L031101

Event Reconstruction

Reconstruct $\Upsilon(4S)$ decay completely: full reconstruction of one B (B-tag) decaying hadronically. Select high-quality tags by two kinematic variables b_{beam} $\Delta E = E_{beam} - E_{B_{tag}}$

$$m_{ES} = \sqrt{E_{beam}^2 - p_{B_{tag}}^2}$$

Signal-side B decays into a fully reconstructed SM baryon and an invisible dark state \rightarrow look for a peak in the missing mass spectrum

B-sig selection criteria is channel dependent (see later)

398 fb⁻¹ used for analysis: remainder of the On Peak data used to tune analysis prior to unblinding

Example of a Fully Reconstructed Event

• $B^0 \rightarrow \psi(2S) K_s$

One of ~470 million recorded decays

• $\overline{B^0} \rightarrow D^{*+} \pi^{-}$ $\rightarrow D \pi^+$ **└→**K-π+

Analysis Method

MC Generators used to model **Standard Model Backgrounds:**

- $q\overline{q}$ (modelled using JETSET);
- BB (modelled using EvtGen).

EvtGen Used to make BSM Signal:

Simulate events for 8 signal mass hypotheses for each channel.

Pass through Geant4 model of BABAR, digitization model and standard reconstruction. Uses real conditions information and beam bkg.

Scanning method:

- Use MC to determine signal selection cuts (and background control regions);
- Derive selection efficiency (ϵ) for 8 possible masses;
- Determine signal resolution (σ) for 8 possible masses;
- Fit functional forms of fit to 8 points, interpolate for any given Ψ_D mass;
- Scan across data samples in missing mass step size dependent on σ .
- Perform profile likelihood fit to determine upper limits on branching rates to BSM channels for given mass.

Signal pre-selection

$B^+ \rightarrow \psi_D + p(O_{ud})$ BABAR proton PID algorithms used to identify proton candidate:	B
 signal side must have + charge and only one charged particle. 	
$B^{0} \rightarrow \psi_{D} + \Lambda (O_{us})$	
 one A candidate (only) in the signal side; 	В
• $\Lambda \rightarrow p\pi^-$ reconstructed; use PID to identify proton and pion candidates;	
significance of Λ decay length (α_{Λ}) > 1.0;	
four-momentum kinematic fit χ^2 of Λ reconstruction ≤ 100 .	
	B ⁺ → ψ _D + p (O _{ud}) BABAR proton PID algorithms used to identify proton candidate; signal side must have + charge and only one charged particle. B ⁰ → ψ _D + Λ (O _{us}) one Λ candidate (only) in the signal side; $\Lambda \rightarrow p\pi^-$ reconstructed; use PID to identify proton and pion candidates; significance of Λ decay length (α _Λ) > 1.0; four-momentum kinematic fit χ^2 of Λ reconstruction ≤ 100.

$B^+ \rightarrow \psi_D + \Lambda_c^+ (O_{cd})$

- one Λ_{c}^{+} candidate (only) in the signal side;
- $\Lambda_{c^+} \rightarrow pK^-\pi^+$ reconstructed, so three charged tracks required on the signal side;
- high quality charged tracks plus PID requirements for kaon and proton.

Final Selection (BDT)

Further signal and background separation obtained using a custom Boosted Decision Tree for each channel.

 $B^{+} \rightarrow \psi_{D} + p(O_{ud})$

Phys.Rev.Lett. 131 (2023) 201801

Require $v_{BDT} > 0.95$ **Provides signal purity > 99%** 47 events pass

Final Selection (BDT)

Further signal and background separation obtained using a custom Boosted Decision Tree for each channel.

Require v_{BDT} **> 0.99** Signal Purity > 99% **0** events pass!

Signal Search

- Final analysis steps:
 - ✓ Reconstruct missing mass of $\psi_{\rm D}$
 - ✓ Determine mass resolution $\sigma(m)$ and efficiency $\varepsilon(m)$ from MC
 - \checkmark Scan across kinematically allowed mass range in steps of $\sigma(m)$
 - Extract limits on BSM branching fractions from a profile likelihood scan

Entries per 10 MeV/c²

3.5

m_{wp} [GeV/c²]

4.0

11 event

$B^{0} \rightarrow \psi_{D} + \Lambda (O_{us})$

Results

- World-leading and first-ever limits on the B mesogenesis model
- Additional opportunity to search for O_{cs} operator stay tuned !

esis model tay tuned !

$B^{+} \rightarrow \psi_{D} + \Lambda_{c}^{+}$ (O_{cd})

$\mathcal{O}_{cd}^{1} = (\psi_{D}b)(cd) \qquad \qquad \text{BABAR Experiment} \\ (\text{this work}) \\ \mathcal{O}_{cd}^{2} = (\psi_{D}c)(bd) \\ \mathcal{O}_{cd}^{3} = (\psi_{D}d)(bc) $	
$\mathcal{O}_{cd}^{1} = (\psi_{D}b)(cd) \qquad \qquad \text{BABAR Experiment} \\ (\text{this work}) \\ \mathcal{O}_{cd}^{2} = (\psi_{D}c)(bd) \\ \mathcal{O}_{cd}^{3} = (\psi_{D}d)(bc) $	
$\mathcal{O}_{cd}^{1} = (\psi_{D}b)(cd) \qquad \qquad \text{BABAR Experiment} \\ (\text{this work}) \\ \mathcal{O}_{cd}^{2} = (\psi_{D}c)(bd) \\ \mathcal{O}_{cd}^{3} = (\psi_{D}d)(bc) $	
$\mathcal{O}_{cd}^{1} = (\psi_{D}b)(cd) \qquad \qquad$	
	cd) <u>BABAR Experiment</u> (this work) (cc)
⁵⁰ 1.75 2.00 2.25 2.50 2.75 m _{ψ_b} [GeV/c	00 2.25 2.50 2.75 m _{ψ_b} [GeV/c ²]

Phys.Rev.D 111 (2025) L031101

Additional Interpretation

- Since the signature is the missing energy/ momentum, the results can be interpreted in any other model that produces
 - E.g. RPV SUSY model [JHEP (
 - First constraints of this kind

Summary and Outlook

- BABAR continues to provide significant constraints on new physics models
- Results presented here place significant limits on the model of baryogenesis through B meson decays (B mesogenesys)
 - ✓ First constraints on $B^+ \rightarrow \psi_D + p$ and $B^+ \rightarrow \psi_D + A_c^+$ channels
 - ✓ Improved limit on $B^0 \rightarrow \psi_D + A$ channel
- Results can be reinterpreted in the context of other models producing same experimental signature
 - already done for RPV SUSY model, providing first direct constraints
 - → can also be applied to e.g. models of Elahi, Elor, McGahee et al. [PRD 105, 055024]; Lenz, Mohamed, Wüthrich [arXiv:2412.14947]
- BaBar continues to produce science, 17 years after the end of data taking !

BDT Features (B⁺ $\rightarrow \psi_D + \Lambda_c^+$)

Recoil B ⁻ Features	Signal B ⁺ Features
Decay mode - the hadronic decay channel of B meson decay.	npi0 - number of pions on signal
B _{tag} Purity - the fraction of B _{tag} mesons that are correctly reconstructed for a given decay mode.	χ^2 - of the fit applied to the Λ+ c
ΔE - the difference of beam energy and the reconstructed B_{tag} energy.	N _{Neut} – number of neutral particle side
M _{Es} - recoil B meson mass distribution	$\mathbf{m}_{_{pK\pi}}$ – the invariant mass of the
Thrust, ThrustZ - The B_{tag} thrust axis is defined as the axis which maximizes the longitudinal momenta of all the particle for B_{tag} reconstruction.	E _{extra} - The total extra neutral ene on the signal side in the center-o

Plus:

r2All - the ratio of the second to zeroth Fox-Wolfram moment for all tracks and neutral clusters **cosT** - the cosine of the thrust vector

side

andidate

es in the signal

Λ + candidate

ergy of-mass frame

BDT Features (B⁺ $\rightarrow \psi_D + \Lambda_c^+$)

