

The SABRE South experiment at the Stawell Underground Physics Laboratory

Federico Scutti **Swinburne University of Technology** On behalf of the SABRE South collaboration

Dark Matter direct detection with scintillator crystals

Dark Matter direct detection

Standard Halo Model:

- Canonical value for density: $\rho \approx 0.3 \text{ GeV/cm}^3$.
- WIMP wind:

$$v_E = v_\odot + v_\oplus \cos(heta) \cos\left[\omega(t-t_0)
ight]$$

- $\theta \approx 60^{\circ}$ earth orbit inclination wrt galactic plane.
- Max: 2 June, Min: 2 Dec.

 $S(t) = B + S_0 + S_m \cos\left[\omega(t - t_0)\right]$

- Elastic scattering of WIMPs on target nuclei.
- Challenging as it produces a rare signal concentrated at low energies ≈ keV.
- Modulation is small: ≈ 0.01 cpd/kg/keV.

Federico Scutti

NaI crystal detectors

Crystal	^{nat} K (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	²¹⁰ Pb (mBq/kg)	Active mass (kg)
DAMA [1]	13	0.7-10	20.5 - 7.5	5-30 x 10−3	250
ANAIS [2]	31	< 0.81	0.36	1.53	112.5
COSINE [3]	35.1	< 0.12	< 2.4	1.74	106
SABRE [4]	4.3	0.4	0.2	0.5	~50 (goal)

[1] <u>NIMA 592 (3) (2008)</u>, [2] <u>EPJC 79 412 (2019)</u>, [3] <u>EPJC 78 490 (2018)</u>, [4] <u>Phys. Rev. Research 2, 013223 (2020)</u>.

Federico Scutti

Current status

DAMA/LIBRA

PASCOS 2025

Federico Scutti

24.7.2025

6

DAMA/LIBRA: a spurious signal?

- Several studies have tried to address the nature of the DAMA/LIBRA modulation:
 - Buttazzo et al.: <u>10.1007/JHEP04(2020)137</u>.
 - COSINE: <u>s41598-023-31688-4</u>.
 - Messina et al: <u>10.1088/1475-7516/2020/04/037</u>.
- Toy MC study on a DAMA/LIBRA-like dataset:
 - Using the same analysis method as DAMA.
 - Wrong phase by 180 deg.
 - Amplitude decays over time.
 - Overestimated amplitude, even with ³H and ²¹⁰Pb levels below DAMA's limit.

SABRE South: <u>2408.08697</u>

Cannot be explained by the DAMA analysis method!

COSINE and ANAIS: combination

- COSINE exposure: **358** kg × yr. (<u>2409.13226</u>)
- ANAIS exposure: **626** kg × yr. (<u>2502.01542</u>)
- Combined exposure: **984** kg × yr. (<u>2503.19559</u>)
- N.B. This is only combining the final results, **without a shared fit**!

Sodium iodide with Active Background REjection

Double location

• Identical modules in northern and southern hemispheres to exclude opposite seasonal background phases e.g. cosmic muons.

High purity crystals

• Crystal growth method developed by Princeton using ultra-high purity NaI powder.

Active bkg veto (SABRE South)

• Unprecedented background rejection at a NaI(Tl) experiment.

Low energy threshold

• High Quantum Efficiency PMTs.

Federico Scutti

SABRE Collaboration

Federico Scutti

Stawell Underground Physics Laboratory

Stawell Underground Physics Laboratory (SUPL):

- First underground laboratory in the southern hemisphere 1025 m deep (2900 m water equivalent) with flat overburden.
- Located in the Stawell gold mine 240 km west of Melbourne.
- Construction completed in August 2022.

Stawell Underground Physics Laboratory

SABRE South TDR: E. Barberio et al 2025 JINST 20 T04001

- In situ evaluation and validation of the background using the large active veto.
- Highest purity crystals and largest active veto. Target mass of **50 kg**.

Federico Scutti

SABRE crystals production

- NaI ultra-pure powder "Astrograde" from RMD with Princeton-Sigma-Aldrich (now Merck). <u>Purification method from Princeton</u>.
- Crystal production is underway with RMD (US) and SICCAS (China) involved.

SABRE crystals characterisation

Eur. Phys. J. C 81, 299 (2021)

	NaI-33	DAMA/LIBRA crystals	ANAIS crystals	COSINE crystals
LY [phe/keV]	12.1 ± 0.2	6-10	15	15
FWHM/E @59.5 keV	13%	16%	11%	12%
²³⁸ U [ppt]	< 0.5	0.7-10	0.2-0.8	< 0.02-0.12
²³² Th [ppt]	< 0.5	0.5-7.5	0.1-1	0.3-2.4
Alpha rate [mBq/kg]	0.54 ± 0.01	0.08-0.12	0.7-3.15	0.74-3.20
^{nat} K [ppb] (from ICP-MS)	4.6 ± 0.2	< 20	17-43	17-82

Federico Scutti

Muon flux measurement at SUPL

- Muon detectors installed at SUPL in 2024 in a telescope configuration.
- Provides the first test of the SABRE data acquisition system (DAQ) and data processing pipeline: <u>10.1088/1742-6596/2438/1/012061</u>.
- Muon flux measured with one year of data.
- Will soon be submitted for publication.

$$f = 5.127 \pm 0.029_{\text{stat}} \pm 0.250_{\text{sys}} \times 10^{-8} [\text{s}^{-1} \times \text{cm}^{-2}]$$

$$10^{-5} \qquad Preliminary$$

$$10^{-6} \qquad Nountain overburden$$

$$10^{-7} \qquad Soudan \qquad Kamioka$$

$$SUPL \qquad LNGS$$

$$Boulby \qquad LNGS$$

$$SURF \qquad SURF$$

$$10^{-9} \qquad SNOLAB \qquad CJPL$$

$$10^{-10} \qquad SNOLAB \qquad CJPL$$

$$Vertical overburden depth [km.w.e.]$$

Telescope configuration

Federico Scutti

SABRE South: liquid scintillator veto

- Full solid angle coverage.
- \bullet 12 kL of liquid alkyl benzene (LAB) from the JUNO experiment.
- Photon attenuation > 20 m.
- Any radioactive decay with γ > 100 keV can be detected.
- \bullet Possibility to host b/w 18 to 32 Hamamatsu R5912 PMTs with oil-proof bases.

Federico Scutti

SABRE South: background model

- Crystal background > 90% of the total background.
- Intrinsic crystal radiation > 70% of the total.
- Overall veto requirement is expected to suppress **27%** of the total background.
- Expecting **0.72 cpd/kg/keV** in the region of interest.

Eur. Phys. J. C 83, 878 (2023)

Key contaminants

Isotope	Background	Half life	Source
⁴⁰ K	3 keV electron	10 ⁹ y	Environment
²¹⁰ Pb	15 keV electron	22.3 y	Rn in water
Tritium	5 keV electron	12 y	Cosmogenic

SABRE South: PMT studies

Federico Scutti

SABRE South: assembly started in 2023

Federico Scutti

SABRE South: sensitivity projection

Fig. 9 The exclusion and discovery power of SABRE South for a DA-MA/LIBRA-like signal. The shaded regions indicate 1σ statistical uncertainty bands.

• SABRE South is expected to reject the DAMA/LIBRA modulation at 3σ (null results) or confirm it at 5σ (for a compatible modulation) within 2.5 years.

Federico Scutti

Conclusions

- The primary objective of SABRE is to deploy identical detectors in both hemispheres.
- SABRE has a significant technological advantage with respect to ANAIS and COSINE.
 - Ultra-high purity crystals.
 - Full coverage active veto.
 - Dual location.
- Deployment at SUPL by the end of 2025/beginning of 2026. <u>TDR available</u>!
- Exclusion or discovery results in 2.5-3 years of continuous operation.
- Links:
 - ARC Centre of Excellence for Dark Matter Particle Physics.
 - <u>SABRE experiment</u>.
 - <u>SUPL laboratory</u>.

Backup

Weakly Interactive Massive Particles

- WIMPs are assumed to have masses in the range from ≈ 1 GeV to ≈ 100 TeV.
- Going below the GeV threshold requires targets lighter than a nucleus.

Signal detection

- Dark matter signals are rare.
- Only expected in the main detector module as a coincidence of crystal PMT signals.

Background veto

- Intrinsic and cosmogenic radioactivity within the crystal:
 - Rejected by veto: **4**°K, ²²Na, ²³⁸U, ²³²Th.
 - Not rejected by veto: ³H,²¹⁰Pb, ⁸⁷Rb.
- Photons (γ) and neutrons (n) from surrounding material.
- Cosmic muons (μ) inducing n.

SABRE North and South

Common core features

- Same detector module concept (ultra-pure crystals and photomultipliers).
- Common simulation, DAQ and software frameworks.
- Exchange of engineering know-how with official collaboration agreements between the ARC Centre of Excellence for Dark Matter Particle Physics and the INFN.

Different shielding designs

- **SABRE North** has opted for fully passive shielding due to the phase-out of organic scintillators at LNGS. Direct counting and simulation show that this is compliant with the background goal of SABRE North at LNGS.
- **SABRE South** will be the first experiment at SUPL; the liquid scintillator will be used for in-situ evaluation and validation of the background in addition to background rejection and particle identification.

Quenching factors

- Equally energetic recoiling ions and electrons induce different detected energies.
- Changes both the amplitude and position of the signal.
- Might depend on the optical properties of the crystal affected by its growth method.
- Depends on the type of recoiling nucleus.

[1] JINST 16 P07034, [2] arxiv:1706.07494, [3] 10.1103/physrevc.92.015807, [4] 10.1016/j.astropartphys.2019.01.001.

- 3 x 3 detector modules: 112.5 kg of NaI(Tl) built by Alpha Spectra company (US).
- Five year exposure completed by August 2022 with 95% live time. Started 3 August 2017.

Federico Scutti

Phys. Rev. D 106, 052005

Total rate:
$$R_i(t|S_m, \alpha_i, \beta_i) = \alpha^i + \sum_{k=1}^{N_{bkgd}} \beta_k^i e^{-\lambda_k t} + S_m \cos(\omega(t-t_0))$$

- Dedicated model for detector *i* and background *k*.
- Flat: long lived backgrounds: ⁴⁰K, ²³⁸U, ²³²Th.
- Exponential: decaying backgrounds. Separate model for ²¹⁰Pb, ³H etc.
- Modulation.

- Background model created using first 1.7 years of data + MC simulations.
- Data normalised by live-time and efficiency in 15 days bins before fitting.

Phys. Rev. D 106, 052005

- 2.8 years of data and 60 kg of NaI(Tl)
- Both results constistent with DAMA and null hypothesis.
- Operations scheduled until late 2022 when commissioning of COSINE-200 will start.

Fig. 5 α activity in ²¹⁰Po energy region as a function of time with 5days binning. The best fit function to the data (red solid line) is the sum of the build-up function with the mean life of ²¹⁰Po (blue dotted line) and a constant component independently determined (orange dotted line). The black dashed line shows the activity of ²¹⁰Po at equilibrium

Federico Scutti

Fig. 4 Distribution of mean time vs. energy of α (red) and β/γ (black) events. The blue dotted line shows our typical separation cut

Fig. 11 NaI-33 low energy spectrum before (black dashed line) and after noise rejection. We show the result of the cut-based (blue points) and multivariate BDT (red points) analyses. The blue and red histograms are corrected by the respective cut acceptance

Federico Scutti

See B. Melbourne poster (P16)

SABRE crystals: zone refining

- Strategic and unique to the SABRE project is the idea to zone-refine the powder prior to growth.
- A zone refiner suitable for ~100 kg crystal production has been built in collaboration with MELLEN.
- The zone refiner is being moved to RMD for growing a test crystal.

Phys. Rev. Applied 16, 014060

• Impurities are pushed to the end of the refining tube and removed from the ingot before the crystal growth. Reduction factors of:

• 4ºK: 10 - 100.

- ²¹⁰Pb: 2.
- 87**Rb: 10 100.**
- The final crystal intrinsic background is ≈ 0.3 cpd/kg/keV, lower than the current world record of ≈ 1 cpd/kg/keV.

Federico Scutti

SABRE crystals: zone refining

- Zone refining technique successfully used in the semiconductor industry.
- Impurities are segregated to one side of the ingot by the moving ovens.
- Tested on NaI Astrograde powder by Princeton group at Mellen (USA).
- Four runs with Astrograde powder have been performed.
- Ampoule preparation and handling by RMD (USA).
- Zone refining will significantly reduce internal background components: ${}^{40}\text{K}$: \approx 10, ${}^{210}\text{Pb}$: \approx 2.
- The final crystal intrinsic background is expected to be ≈ 0.3 cpd/kg/keV, lower than the current world record of ≈ 1 cpd/kg/keV.

Federico Scutti

Nal(TI) crystals in-situ background

Source	Rate in ROI	Fit results	
	[1,6]keV in		
	cpd/kg/keV		× č
⁴⁰ K	0.125	0.16±0.01 mBq/kg	Š
²¹⁰ Pb bulk	0.333	0.49±0.05 mBq/kg	8 1
²¹⁰ Pb reflector	0.054	11±1 mBq/kg _{PTFE}	
bulk			Bar Bar
²¹⁰ Pb reflector	0.023	<0.6 mBq/m ²	
surface			10 ⁻¹ = 2 ¹
³ Н	0.198	24±2 μBq/kg	
¹²⁹	0.0003	1.03±0.05 mBq/kg	1 <u></u> <u></u> <u></u>
²³⁸ U	0.006	5.9±0.6 μBq/kg	- 1
²³² Th	0.0003	1.6±0.3 μBq/kg	10 ⁻²
PMT	0.003	1.9±0.4 mBq/PMT	
External	0.185	0.89±0.05	1 E d' 1
Other β's	0.333	297±15	1 Е́сь
TOTAL	1.26±0.27		40-3

Na-33 crystal intrinsic background 0.66 cpd/kg/keV dominated by ⁴⁰K and ²¹⁰Pb

Figure 3: The modulation rate observed in the 1-6 keV region for the various operational experiment compared with the expected modulation for a 10 or 100 GeV/c^2 WIMP under the assumption of various QFs.

OBSERVATION RATE

Number of events observed as a function of observation energy E_{ee} (electron equivalent keV for scintillator detectors)

Figure 2: Recoil energy spectrum of an illustrative DM model. Superimposed in red and orange are the regions that correspond to $1-6 \text{ keV}_{ee}$ after the application of either the DAMA (red) or Stiegler (orange) QFs.

Federico Scutti

SABRE North

- Fully passive shielding and no active veto rejection due to organic scintillators phased off at LNGS.
- 3 x 3 matrix of NaI(Tl) detectors (≈40 kg).
- Inner 5 mm thick ultra pure Cu box.
- 10-25 cm Cu and 40-60 cm PE shielding structure (\approx 30 t).
- Expected background 0.5 cpd/kg/keV with zone-refining or 1 cpd/kg/keV without zone-refining.

- TDR due in summer 2024. If approved, begin installation in 2025.
- Crystal production and detector deployment in 2025-2027.

Federico Scutti

UNCERTAINTIES IN SCINTILLATION QUENCHING FACTORS ARE A RELEVANT SYSTEMATIC EFFECT for the comparison between DAMA/LIBRA and ANAIS

Na - QF derived using different methods and different calibration procedures do not agree. Dependences on the crystal properties can not be discarded

Five small AS crystals Collaboration between Yale, Duke and Zaragoza **Measurements in 2018 @TUNL**

Our best (preliminary) estimate for Na-QF in Nal(Tl)-AS crystals is 20%

Linearizing response in energy using ¹³³Ba data

Assuming proportional response using 57.6 keV energy deposition

Federico Scutti

"onsite" neutron calibrations with the full ANAIS-112 set-up

Four calibration runs since April 2021 using ²⁵²Cf neutron source at different positions in the ANAIS-112 set-up

Neutrons produce many "bulk scintillation events" at very low energy

- We have a large population of events for training our new ML analysis and checking efficiency stability
- We expect to derive some information on QF by comparing simulations and measurements

"onsite" neutron calibrations with the full ANAIS-112 set-up

Four calibration runs since April 2021 using ²⁵²Cf neutron source at different positions in the ANAIS-112 set-up

Neutrons produce many "bulk scintillation events" at very low energy

- We have a large population of events for training our new ML analysis and checking efficiency stability
- We expect to derive some information on QF by comparing simulations and measurements

Background model

Detailed **background models** for each detector, based on Geant4 Monte Carlo simulation and accurate quantification of **background sources**

Assessment of backgrounds of the ANAIS experiment for dark matter direct detection, J. Amaré et al, Eur. Phys. J. C 76 (2016) 429 Analysis of backgrounds for the ANAIS-112 dark matter experiment, Eur. Phys. J. C 79 (2019) 412

- Activity from external components measured with HPGe detectors at Canfranc
- Internal activity directly assessed: mainly ⁴⁰K, ²¹⁰Pb

Detector	$^{40} m K$ (mBq/kg)	232 Th (mBq/kg)	$^{238}\mathrm{U}$ (mBq/kg)	$^{210}\mathrm{Pb}$ (mBq/kg)
D0 D1	1.33 ± 0.04 1.21 \pm 0.04	$(4\pm 1) \ 10^{-3}$	$(10\pm 2) \ 10^{-3}$	3.15 ± 0.10 3.15 \pm 0.10
D2	1.07 ± 0.03	$(0.7\pm0.1) \ 10^{-3}$	$(2.7\pm0.2)\ 10^{-3}$	0.7 ± 0.1
D3 D4	0.70 ± 0.03 0.54 ± 0.04			1.8 ± 0.1 1.8 ± 0.1
D5 D6	1.11 ± 0.02 0.95 ± 0.03	$(1.3\pm0.1)\ 10^{-3}$		0.78 ± 0.01 0.81 ± 0.01
D7 D8	0.96 ± 0.03 0.76 ± 0.02	(1.0 ± 0.1) 10 ⁻³ (0.4 ± 0.1) 10 ⁻³		0.80 ± 0.01 0.74 ± 0.01

²³²Th, ²³⁸U: determined by alpha rate following PSA and analysis of BiPo sequences at a level of a few μBq/kg, but ²¹⁰Pb out of equilibrium

S. Cebrián, ECU2021

Federico Scutti

PASCOS 2025

24.7.2025 51

Phys. Rev. D 103, 102005

Analysis (3 years of data):

- Pulse shape cut to select events from NaI(Tl) scintillation.
- Asymmetric event rejection (E < 2 keV) to remove PMT-originated events.
- Remove 1 second after a muon passage.
- Multiplicity = 1. Remove multi-module events.

Revision of background model underway

Federico Scutti

PASCOS 2025

24.7.2025 52

Phys. Rev. D 103, 102005

• Minimising: $\chi^2 = \sum_{i,d} \frac{\left(n_{i,d} - \mu_{i,d}\right)^2}{\sigma_{i,d}^2}$

where $n_{i,d}$, $\sigma_{i,d}$ are computed in 10 days bins *i* corrected by live time and efficiency for each detector *d*.

• Background probability distribution drawn from the background model for every detector.

 $\mu_{i,d} = [R_{0,d}(1 + f_d \phi_{bkg,d}^{MC}(t_i)) + S_m cos(\omega(t_i - t_0))] M_d \Delta E \Delta t$

- Best fits are incompatible with DAMA/LIBRA at 3.3 σ and 2.6 σ in [1-6] and [2-6] keV regions.
- Sensitivity is at 2.5 σ and 2.7 σ in the same regions respectively.
- New BDT-based analysis is in progress expected to reach a 5 σ sensitivity to DAMA/LIBRA with two more years of data.

Federico Scutti

Background model

Detailed **background models** for each detector, based on Geant4 Monte Carlo simulation and accurate quantification of **background sources**

Cosmogenic activity in crystals: short-lived Te and I isotopes, ³H, ²²Na, ¹⁰⁹Cd, ¹¹³Sn

²²Na: from analysis of coincidences

¹⁰⁹Cd, ¹¹³Sn: from peaks at binding energies of K-shell electrons (after EC) J. Amaré et al, JCAP 02 (2015) 046 J. Amare et al, Astropart. Phys.97 (2018) 96 P. Villar et al, Int. J. Mod. Phys. A 33 (2018) 1843006

³**H:** additional background source contributing only in the very low energy region required, which could be tritium

D0-D1: 0.20 mBq/kg **D2-D8:** 0.09 mBq/kg (upper limit set by DAMA/LIBRA)

S. Cebrián, ECU2021

ANAIS-112 <u>JCAP11 (2022) 048</u>

Figure 15. ANAIS-112 sensitivity to the DAMA/LIBRA signal in σ C.L. units as a function of real time in the [1,6] keV (a) and [2,6] keV (b) energy regions considering decreasing background after applying the BDT event selection. The cyan bands represent the 68% C.L. DAMA/LIBRA uncertainty.

ANAIS-112 <u>JCAP11 (2022) 048</u>

Figure 16. ANAIS-112 sensitivity to the DAMA/LIBRA signal in σ C.L. units as a function of real time in the [1,6] keV (a) and [2,6] keV (b) energy regions considering decreasing background. The blue lines show our sensitivity projection derived from applying the previous ANAIS-112 filtering procedure, whereas the red lines display the expected sensitivity from applying the BDT method, as shown in figure 15.

COSINE-100 <u>Sci. Adv. 7, eabk2699 (2021)</u>

WIMP proton spin-independent cross section for isospin violating interactions

WIMP nucleon spin-independent cross section for isospin conserving interaction

COSINE data with DAMA technique

- Suggested that DAMA's analysis can generate modulation signal ۲
- Tested with COSINE-100 data with DAMA ٠ technique and in pseudo-data to replicate DAMA data
- Negative modulation amplitude induced at DAMA phase in both cases •

Rate (counts/keV/kg/day)

Residual (counts/keV/kg/day)

ICHEP 2022

(b)

WIMP search via Migdal effect

- WIMPs can interact with Nal crystals and produce energetic electrons alongside nuclear recoil via Migdal effect
 - Good candidate for searching for low mass DM
 - Search window of COSINE-100 lowered to 200 MeV/c²
- Search using 1.7 years data with 1 keV low energy threshold
- No WIMP signal observed
- <u>Adhikari, G., et al. "Searching for low-mass dark matter via the Migdal effect in</u> <u>COSINE-100." Physical Review D 105.4 (2022): 042006.</u>

Example of fit to 1.1 GeV/c² WIMP

ICHEP 2022

Robbie Neal

27

Federico Scutti