Saving protons (and SUSY) with flavor symmetry

Akifumi Chitose¹, Masahiro Ibe^{1,2}, Satoshi Shirai², Keiichi Watanabe¹ ¹ICRR, the University of Tokyo ²IPMU, the University of Tokyo

SUSY and proton decay

Proton decay

Supersymmetry

PeV-scale mini-split SUSY

- Focus on:
 - Anomaly mediation [Randall, Sundrum; 1999][Giudice, Luty, Murayama; 1998]
 - $m_0 \sim m_{3/2} \sim \text{PeV}$
 - $m_{1/2} \sim \text{TeV}$
- Consistent with LHC results (incl. m_H)
- Better handle on SUSY flavor/CP problems

Proton decay in MSSM

•
$$W \supset \frac{1}{\Lambda} Q Q Q L + \frac{1}{\Lambda} \bar{u} \bar{e} \bar{u} \bar{d}$$

- Decay rate $\propto \Lambda^{-2}$
 - cf. $\propto M_{GUT}^{-4}$ for X exchange in GUT

• Violates Super-K bound

Q1: How to extend proton lifetime?

Flavor puzzle

Flavor symmetry

Example: Froggatt-Nielsen mechanism

- Idea: suppress unwanted operators with global U(1)_{FN} symmetry
- Break it with $\langle \Phi \rangle$ w/ $q_{\Phi} = 1$

$$\mathcal{L} \supset \mathcal{O}(1) imes \left(rac{\Phi^{(\dagger)}}{M_{\mathsf{Pl}}}
ight)^{|q_{q_i}+q_{\bar{u}_j}|} q_i H \bar{u}_j + \cdots$$

•
$$\epsilon \coloneqq \frac{\langle \Phi \rangle}{M_{\mathsf{Pl}}} = \mathcal{O}(0.1)$$

• With SUSY, chiral fields Φ_{\pm} with $q = \pm 1$ needed

•
$$|\langle \Phi_+ \rangle| = |\langle \Phi_- \rangle|$$
 for simplicity

Too many possibilities

[Ibe, Shirai, Watanabe; 2025]

ū	ā	q	L	\bar{e}
U 8,4,1 6,3,1 7,3,1 4,2,0 4,2,0 6,3,1 4,2,0 6,3,1 4,2,0 6,3,1 4,2,0 7,3,1 7,3,1	<i>C</i> 6, 6, 6 4, 5, 4 5, 6, 5 3, 3, 3 3, 3, 3 4, 5, 4 3, 4, 3 4, 5, 4 3, 4, 3 4, 5, 4 6, 6, 6 5, 6, 5 3, 3, 3 5, 6, 5 3, -10, 4 7, 5, 5 3, 4, 3 5, 6, 5 3, 3, 3 5, 6, 5 3, 4, 3 5, 6, 5 3, 3, 3 3, 4, 5 5, 6, 5 3, 3, 3 5, 6, 5 3, 3, 3 5, 6, 5 3, 3, 3 3, 4, 5 5, 6, 5 3, 3, 3 5, 6, 5 3, 5, 6 5, 6 5, 6, 5 3, 6, 5 3, 6, 5 3, 6, 5 3, 7, 7 5, 6, 5 3, 7, 7 5, 6, 5 3, 7, 7 5, 6, 5 3, 7, 7 5, 6, 7 5, 6, 7 5, 6, 7 5, 7 5, 6, 7 5, 7 5, 7 5, 6, 7 5, 6, 7 5, 7 5, 6, 7 5,	4 5,3,0 3,2,0 4,3,0 3,2,0 4,2,0 4,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 5,3,0 5,3,0 5,3,0 5,3,0 5,3,0 4,3,0 5,3,0 4,3,0 5,3,0 3,2,0 5,3,0 4,3,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0 3,2,0 5,3,0	$\begin{array}{c} L \\ 7,3,0 \\ 2,2,0 \\ 10,6,4 \\ 3,-1,-5 \\ 1,-6,-6 \\ 5,2,0 \\ 7,5,3 \\ 2,1,-4 \\ -2,-2,-4 \\ -9,-7,-4 \\ 6,2,0 \\ 9,1,-3 \\ 10,6,4 \\ 2,2,-6 \\ 10,7,5 \\ 2,2,-6 \\ 1,3,5 \\ 10,0,-2 \\ 7,5,3 \\ 6,2,0 \end{array}$	$\begin{array}{c} & & \\ & 5,5,4 \\ & 3,3,-10 \\ & 1,0,0 \\ & -7,8,7 \\ & 2,1,-5 \\ & 4,4,3 \\ & 1,0,0 \\ & 8,7,-7 \\ & -10,9,9 \\ & -2,0,1 \\ & 5,5,4 \\ & 6,5,-5 \\ & 1,1,0 \\ & 3,3,-10 \\ & 3,3,-10 \\ & 10,-9,-9 \\ & 5,4,-4 \\ & 1,0,0 \\ & 5,5 \\ \end{array}$

Q2: How to probe them?

Proton decay and Froggatt-Nielsen

• Flavor symmetry can also suppress proton decay:

$$W_{\rm eff} = \frac{\mathcal{O}(1)}{\Lambda} \epsilon^{|q_{Q_i} + q_{Q_j} + q_{Q_k} + q_{L_l}|} Q_i Q_j Q_k L_l + \frac{\mathcal{O}(1)}{\Lambda} \epsilon^{|q_{\bar{u}_i} + q_{\bar{e}_j} + q_{\bar{u}_k} + q_{\bar{d}_l}|} \bar{u}_i \bar{e}_j \bar{u}_k \bar{d}_l$$

- A1?: U(1)_{FN} helps evade SK bound
- A2?: Decay mode(s) reflect the charge assignment

Proton lifetime in MSSM with $U(1)_{FN}$

Calculation of lifetime

$\Lambda = 10^{18} \text{GeV}$	Coefficients for QQQL, $\bar{u}\bar{e}\bar{u}\bar{d}$, Yukawa, soft masses
MSSM V	$\propto \epsilon^{1 \sum q_1}$
$m_0 = 10^6 {\rm GeV}$	$m_{1/2}$: given by anomaly mediation
SM+gauginos ▼	
$m_Z = 90 \mathrm{GeV}$	SM gauge couplings
QED+QCD	
2 GeV	Matrix element from lattice \rightarrow proton decay rate

Results (Preliminary)

No charges

Examples: flavor structure

Example 1
$$q_{\bar{u}} = (7, 3, 0), q_{\bar{d}} = (5, 5, 4), q_Q = (5, 3, 0)$$

 $q_L = (2, 0, -1), q_{\bar{e}} = (9, 6, 4)$

Example 2
$$q_{\bar{u}} = (6, 3, 0), q_{\bar{d}} = (5, 3, 3), q_Q = (6, 3, 0)$$

 $q_L = (5, 3, 3), q_{\bar{e}} = (6, 3, 0)$

Example 3
$$q_{\bar{u}} = (7, 3, 1), q_{\bar{d}} = (4, 5, 4), q_Q = (5, 3, 0)$$

 $q_L = (10, -9, -9), q_{\bar{e}} = (-1, 4, 6)$

Summary

- (PeV-scale) SUSY is an attractive framework
 - Issue: rapid proton decay
- $U(1)_{FN}$ flavor symmetry can explain the flavor structure of (MS)SM
 - Issue: too many possible charge assignments
- Flavor symmetry may extend proton lifetime and save MSSM
- \bullet Proton decay can be a probe for the U(1)_{FN} charges

Thank you!

Backup

Proton decay in SUSY SU(5)

Q: If SUSY catalyzes proton decay, why is SUSY SU(5) OK (when non-SUSY SU(5) is not)?

A: The dimension-5 operator is generated by colored Higgsino exchange e.g.

whose coupling is suppressed by Yukawas and / or CKM mixing angles.