Strong-coupling instabilities in degenerate f(R) models.

Adrián Casado-Turrión,

FTMC (Center for Physical Sciences and Technology), Lithuania.

In collaboration with:

- Álvaro de la Cruz-Dombriz (Salamanca U. and U. Cape Town),
- Antonio Dobado (Complutense U. Madrid).

Based on:

- PRD 111 (2025) 4, 044030 (arXiv:2412.09366),
- PRD 108 (2023) 6, 064006 (arXiv:2303.02103).

Introduction.

Metric f(R) gravity: fundamentals.

Simplest possible generalisation of GR, with action

$$S[g_{\mu\nu}, \Psi] = \frac{1}{16\pi G} \int_{\mathscr{M}} d^4x \sqrt{-g} f(R) + S_{\text{matter}}[g_{\mu\nu}, \Psi],$$

leading to fourth-order EOM:

$$f'(R)R_{\mu\nu} - \frac{f(R)}{2}g_{\mu\nu} - (\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\Box)f'(R) = 8\pi G T_{\mu\nu}.$$

Equivalence to GR + an additional dynamical scalar (scalaron) in the so-called 'Einstein frame:'

$$\phi(R) = \sqrt{\frac{3}{16\pi G}} \ln f'(R), \qquad V(\phi) = \frac{f'(R)R - f(R)}{16\pi G f'^2(R)}.$$

1

Metric f(R) gravity: three GW polarisations.

The extra scalar mode was attested **early studies of GWs** in f(R) gravity,¹ linearising around Minkowski space-time $\eta_{\mu\nu}$:

$$\Box \bar{h}_{\mu\nu} + \mathcal{O}(h^2) = 0,$$

$$(\Box - m_{\text{eff}}^2) R^{(h)} + \mathcal{O}(h^2) = 0,$$

where $R = R^{(h)} + \mathcal{O}(h^2)$ and we have introduced:

$$\bar{h}_{\mu\nu} \equiv h_{\mu\nu} - \left[\frac{h}{2} + \frac{f''(0)}{f(0)}R^{(h)}\right]\eta_{\mu\nu}, \qquad m_{\text{eff}}^2 \equiv \frac{f'(0)}{3f''(0)}$$

Three polarisations: +, \times (graviton) and scalar.

¹S. Capozziello, C. Corda, M. F. De Laurentis, PLB 669 (2008) 255-259.

Metric f(R) gravity: three GW polarisations?

The previous picture has been put into question several times:

- Some authors claimed there was a second scalar mode (the breathing mode). Rigorously proven not to exist.
- Other authors showed that some particular f(R) models (such as $f(R) \propto R^2$) lack the graviton modes.^{2, 3}
- Later works confirmed that $f(R) \propto R^2$ does not propagate neither the graviton nor the scalaron modes.^{4,5,6}

²L. Álvarez-Gaumé *et al.*, Fortsch. Phys. 64 (2016) 2-3, 176-189.

³ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 108 (2023) 6, 064006.

⁴A. Hell, D. Lüst, G. Zoupanos, JHEP 02 (2024) 039.

⁵A. Golovnev, IJTP 63 (2024) 8, 212.

⁶G. K. Karananas, PRD 111 (2025) 4, 044068; arXiv:2408.16818 [hep-th].

Our goals.⁷

- Unify and extend all previous results on the topic.
- Provide the **definitive counting** of degrees of freedom in f(R).
- Focus on evanescent degrees of freedom (strong-coupling instabilities).
- Prove that there are no propagating degrees of freedom in maximally-symmetric (MS) backgrounds in the large class of so-called degenerate f(R) models (including the aforementioned $f(R) \propto R^2$).
- Compare with the **non-degenerate models**.

⁷ACT, Á. de la Cruz-Dombriz, A. Dobado, PRD 111 (2025) 4, 044030.

A brief glossary.

Glossary: **Strong-coupling instabilities.**⁸

• **Strongly-coupled background**: whenever some expected degrees of freedom do not propagate on said background:

$$C(\text{background}) \Box \Phi + U(\Phi) = 0 \implies \Box \Phi + \underbrace{\frac{U(\Phi)}{C(\text{background})}}_{\to \infty} = 0$$

We will find this instability in all degenerate f(R) models.

⁸A. Delhom, A. Jiménez-Cano, F.J. Maldonado Torralba, *Instabilities in Field Theory: A Primer with Applications in Modified Gravity*, Springer, 2023.

Glossary: (Non-)degenerate f(R) models.

Consider solutions with $R = R_0 = \text{const.}$ (constant-curvature).

• R_0 -non-degenerate f(R) models: $f'(R_0) \neq 0$.

$$R_{\mu\nu}^{(0)} = \Lambda_{
m eff} g_{\mu
u}^{(0)}, \qquad \Lambda_{
m eff} = rac{R_0}{4} = rac{f(R_0)}{2f'(R_0)}.$$

Example: $f(R) = R - 2\Lambda + \alpha R^2$ with $R_0 = 4\Lambda$ ($\Lambda_{\text{eff}} = \Lambda$).

Glossary: (Non-)degenerate f(R) models.

Consider solutions with $R = R_0 = \text{const.}$ (constant-curvature).

• R_0 -non-degenerate f(R) models: $f'(R_0) \neq 0$.

$$R_{\mu\nu}^{(0)} = \Lambda_{\rm eff} g_{\mu\nu}^{(0)}, \qquad \Lambda_{\rm eff} = \frac{R_0}{4} = \frac{f(R_0)}{2f'(R_0)}.$$

Example: $f(R) = R - 2\Lambda + \alpha R^2$ with $R_0 = 4\Lambda$ ($\Lambda_{\text{eff}} = \Lambda$).

• R_0 -degenerate f(R) models: $f'(R_0) = 0$ $\Longrightarrow_{\text{trace}} f(R_0) = 0$.

Every metric with $R = R_0 = \text{const. solves the EOM!}$

$$f'(R_0)R_{\mu\nu}^{(0)} = \frac{f(R_0)}{2}g_{\mu\nu}^{(0)}$$
 becomes $0 = 0$ identically!

Example: $f(R) \propto R^{1+\delta}$ for $\delta > 0$ and $R_0 = 0$.

Main results.

Perturbations around MS backgrounds.

MS backgrounds are constant-curvature space-times:

$$g_{\mu\nu}^{(0)} = egin{cases} ext{de Sitter (dS)} & ext{if } R_0 > 0, \ ext{Minkowski} & ext{if } R_0 = 0, \ ext{Anti-de Sitter (AdS)} & ext{if } R_0 < 0, \end{cases}$$

We consider small **perturbations around** $g_{\mu\nu}^{(0)}$:

$$\begin{split} g_{\mu\nu} &= g_{\mu\nu}^{(0)} + h_{\mu\nu}, & |h_{\mu\nu}| \ll |g_{\mu\nu}^{(0)}|; \\ R &= R_0 + R^{(h)} + \mathcal{O}(h^2), & R^{(h)} &= -\Box h + \nabla_{\mu} \nabla_{\nu} h^{\mu\nu} - \frac{R_0}{4} h. \end{split}$$

Note that $R^{(h)}$ is **gauge-invariant** $(x^{\mu} \rightarrow x'^{\mu} = x^{\mu} + \xi^{\mu})$.

MS backgrounds: Linearised f(R) gravity.

At linear level around a MS $g_{\mu\nu}^{(0)}$, the f(R) **EOM** become

$$0 = f''(R_0) \left[\frac{R^{(0)}}{4} g_{\mu\nu}^{(0)} - (\nabla_{\mu} \nabla_{\nu} - g_{\mu\nu}^{(0)} \Box) \right] R^{(h)}$$

$$+ f'(R_0) \left[R_{\mu\nu}^{(h)} - \frac{R^{(h)}}{2} g_{\mu\nu}^{(0)} \right] - \frac{f(R_0)}{2} h_{\mu\nu} + \mathcal{O}(h^2),$$

while their trace reads:

$$f''(R_0)\left(\Box + \frac{R_0}{3}\right)R^{(h)} - \frac{f'(R_0)}{3}R^{(h)} + \mathcal{O}(h^2) = 0.$$

Note we have never divided by $f(R_0)$, $f'(R_0)$ or $f''(R_0)$!

MS backgrounds: Scalaron propagation (deg. and non-deg.).

 $f''(R_0) \neq 0$ $R^{(h)}$ satisfies a massive Klein-Gordon equation:

$$(\Box - m_{\text{eff}}^2)R^{(h)} + \mathcal{O}(h^2) = 0, \qquad m_{\text{eff}}^2 = \frac{1}{3} \left[\frac{f'(R_0)}{f''(R_0)} - R_0 \right].$$

Therefore, $R^{(h)}$ is a **propagating DOF** (the **scalaron**).

$$f''(R_0) = 0$$
 $f''(R_0)^{-0} \left(\Box + \frac{R_0 - f'(R_0)}{3}\right) R^{(h)} + \mathcal{O}(h^2) = 0.$

Result 1. MS backgrounds with $R = R_0$ are **strongly-coupled** in f(R) models with $f''(R_0) = 0$.

9

MS backgrounds: R_0 -degenerate case.

$$f'(R_0) = 0$$
 R_0 -degenerate case. (Assuming $f''(R_0) \neq 0$.)

The linearised EOM and their trace reduce to:

$$0 = \left[\frac{R^{(0)}}{4}g_{\mu\nu}^{(0)} - (\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}^{(0)}\Box)\right]R^{(h)} + \mathcal{O}(h^{2}),$$

$$0 = \left(\Box + \frac{R_{0}}{3}\right)R^{(h)} + \mathcal{O}(h^{2}).$$

We notice that:

- The graviton has disappeared! (Strong-coupling.)
- The remaining **scalaron** $R^{(h)}$ is **constrained**.

MS backgrounds: R_0 -degenerate case.

 $R_0 = 0$ The general solution is:

$$R^{(h)} = C_{\mu} x^{\mu} + D.$$

 $R_0 > 0$ The general solution is:

$$R^{(h)} = \mathscr{A} e^{H_0 t}.$$

Neither represent a localised perturbation unless $C_{\mu} = 0$, D = 0 and $\mathscr{A} = 0$. In other words, the **only solution** is $R^{(h)} = 0$.

Result 2. R_0 -degenerate f(R) models with $f''(R_0) \neq 0$ **do not propagate any degrees of freedom** atop MS backgrounds. Only the graviton is truly strongly-coupled.

MS backgrounds: Non-degenerate case, graviton.

$$f'(R_0) \neq 0$$
 Non-degenerate case. (Assuming $f''(R_0) \neq 0$.)

Introducing

$$\bar{h}_{\mu\nu} \equiv h_{\mu\nu} - \left[\frac{h}{2} + \frac{f''(R_0)}{f'(R_0)}R^{(h)}\right]g^{(0)}_{\mu\nu},$$

the **linearised** f(R) **EOM** become:

$$\left(\Box - \frac{R_0}{6}\right)\bar{h}_{\mu\nu} + \mathscr{O}(h^2) = 0.$$

Gauge symmetry: $\nabla^{\mu}\bar{h}_{\mu\nu}=0$, $\bar{h}=0$, $\bar{h}_{\mu0}=0$.

 \implies There are **two polarisation modes** (+ the scalaron).

MS backgrounds: Non-degenerate case, graviton.

In **de Sitter** space-time ($R_0 \equiv 12H_0^2 > 0$),

$$ds_{(0)}^2 = -dt^2 + a^2(t) d\vec{x}^2, \qquad a(t) = e^{H_0 t},$$

simple solutions with wave vector \vec{k} are:

$$\begin{split} \vec{h}_{ij}^{\vec{k}}(t,\vec{x}) &= A_{ij}^{(1)}(\vec{k}) \, \mathrm{e}^{H_0 t/2} \, \psi_{\vec{k}}^{(1)}(t) \, \mathrm{e}^{-\mathrm{i} \vec{k} \cdot \vec{x}} \\ &+ A_{ij}^{(2)}(\vec{k}) \, \mathrm{e}^{H_0 t/2} \, \psi_{\vec{k}}^{(2)}(t) \, \mathrm{e}^{+\mathrm{i} \vec{k} \cdot \vec{x}}, \\ \psi_{\vec{k} = \vec{0}}^{(1,2)}(t) &= \mathrm{e}^{\mp 3 H_0 t/2}, \\ \psi_{\vec{k} \neq \vec{0}}^{(1,2)}(t) &= H_{3/2}^{(1,2)} \left(\frac{|\vec{k}|}{H_0} \, \mathrm{e}^{-H_0 t}\right). \end{split}$$

MS backgrounds: **Non-degenerate case, graviton.**

All graviton modes are tachyonic regardless of \vec{k} :

$$\bar{h}_{ij}^{\vec{k}}(t,\vec{x}) \underset{t \to +\infty}{\sim} a^2(t) = e^{2H_0t} \to \infty.$$

However, **there is** <u>no tachyonic instability</u>, because the modes do *not* grow faster than the background:

$$g_{ij}^{(0)} = a^2(t) \, \delta_{ij} = e^{2H_0 t} \, \delta_{ij} \implies \frac{|h_{ij}^k|}{|g_{ij}^{(0)}|} \ll 1 \text{ at all times.}$$

'Cosmic expansion dilutes the tachyonic (exponential) growth of perturbations.'

MS backgrounds: **Non-degenerate case, scalaron.**

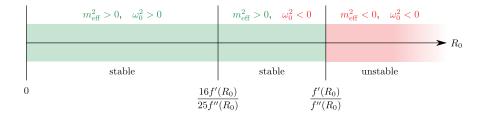
In **de Sitter** space-time ($R_0 \equiv 12H_0^2 > 0$), the **scalaron EOM**,

$$(\Box - m_{\mathrm{eff}}^2) R^{(h)} + \mathcal{O}(h^2) = 0, \qquad m_{\mathrm{eff}}^2 = \frac{1}{3} \left[\frac{f'(R_0)}{f''(R_0)} - R_0 \right].$$

also admits **simple solutions** with wave vector \vec{q} :

$$\begin{array}{lcl} R_{\vec{q}}^{(h)}(t,\vec{x}) & = & A^{(1)}(\vec{q}) \, \mathrm{e}^{-3H_0t/2} \, \psi_{\vec{q}}^{(1)}(t) \, \mathrm{e}^{-\mathrm{i}\vec{q}\cdot\vec{x}} \\ & + & A^{(2)}(\vec{q}) \, \mathrm{e}^{-3H_0t/2} \, \psi_{\vec{q}}^{(2)}(t) \, \mathrm{e}^{+\mathrm{i}\vec{q}\cdot\vec{x}}, \\ \psi_{\vec{q}=\vec{0}}^{(1,2)}(t) & = & \mathrm{e}^{\pm\mathrm{i}\omega_0t}, & \omega_0^2 & = & m_{\mathrm{eff}}^2 - \frac{9H_0^2}{4}, \\ \psi_{\vec{q}\neq\vec{0}}^{(1,2)}(t) & = & H_{\nu}^{(1,2)}\left(\frac{|\vec{q}|}{H_0} \, \mathrm{e}^{-H_0t}\right), & \nu^2 & = & -\frac{\omega_0^2}{H_0^2}. \end{array}$$

MS backgrounds: **Non-degenerate case, summary.**



Result 3. Non-degenerate models with $f''(R_0) \neq 0$ propagate **graviton** + **scalaron** atop MS backgrounds. The scalaron is **tachyonically unstable** if $m_{\text{eff}}^2 < 0$.

Summary and conclusions.

Summary and conclusions.9

- Even in simple theories such as f(R) gravity, determining the number of propagating DOF is convoluted, yet crucial.
- R_0 -degenerate f(R) models propagate:
 - $f''(R_0) \neq 0$: no degrees of freedom, strongly-coupled graviton.
 - $f''(R_0) = 0$: no degrees of freedom, strongly-coupled graviton and scalaron.
- Non-degenerate f(R)-models propagate:
 - $f''(R_0) \neq 0$: graviton and scalaron (latter having a tachyonic instability if $m_{\text{eff}}^2 < 0$).
 - $f''(R_0) = 0$: graviton, strongly-coupled scalaron.

 $^{^9\}mathrm{ACT}$, Á. de la Cruz-Dombriz, A. Dobado, PRD 111 (2025) 4, 044030.

Thank you!

¡Gracias! / Ačiū!

This project has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-PD-24-135; Grant No. PID2022-137003NB-I00 funded by MCIN/AEI/10.13039/501100011033/ and by ERDF 'A way of making Europe;' and Universidad Complutense de Madrid–Banco Santander pre-doctoral/early-career researcher contract CT63/19-CT64/19.

