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Hamiltonian Truncation Overview

Hamiltonian Setup

H = H0 + V (1)

• H0 is an exactly solvable Hamiltonian

• V represents a new interaction, which may be strong.

• Work in the eigenbasis of H0. Truncate so that only a finite number
of states with E0 ≤ ET are included in the basis.

• Diagonalize numerically to calculate spectrum and wavefunctions.
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A Simple Example: The Anharmonic Oscillator

Take the quantum mechanical model

H =
p2 + x2

2
+ λx4 . (2)

Decompose the Hamiltonian so that H0 is the SHO and V = λx4. Work in
the SHO eigenbasis: H0 |n⟩ = (n + 1/2) |n⟩

• Truncate basis to include states
|n⟩ for n + 1/2 ≤ ET .

• All energy eigenvalues are upper
bounds for the true energies due
to min-max theorem.

• Method generalises to QFTs.
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General Idea

Hamiltonian 
Truncation

H =
h1,1 … h1,n
⋮ ⋮

hn,1 … hn,n

e−iHt

e+

e−

t

P(t)

1 We use Hamiltonian Truncation to generate an approximate
Hamiltonian for our system of low dimensionality.

2 We use a qubit based, gate based, quantum device to determine how
this probability evolves with time.
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ϕ4 Theory in Hamiltonian Truncation

The HT formulation of ϕ4 theory in 1 + 1d was developed in
[S. Rychkov, L. Vitale ’14]

H0 =
1

2

∫ L

0
dx : Π2 + (∂xϕ)

2 +m2ϕ2 : . (3)

We work in the P = 0, parity even, Z2 even subsector of the truncated
Hilbert space.
The interaction is

V = g

∫ L

0
dx : ϕ4(x) : . (4)

Expand V in bosonic creation and annihilation operators to compute its
matrix elements.
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Basis States

Quantise the massive scalar field on the circle

ϕ(x) =
∞∑

n=−∞

1√
2LEn

(
an e

iknx + a†n e
−iknx

)
. (5)

where the n represent the different momentum modes on the circle
kn = 2πn/L.

Work in eigenbasis of H0

|{r}⟩ =
n=∞∏
n=−∞

1√
rn!

(
a†n

)rn |0⟩ , (6)

which is the usual Fock basis.
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Truncation

List the states in order of increasing H0 eigenvalue and take the first 2nq

states from this list.

For instance, with nq = 2 and mL = 3, the states we would retain are

|0⟩ , 1√
2

(
a†0

)2
|0⟩ , a†1a

†
−1 |0⟩ ,

1√
4!

(
a†0

)4
|0⟩ . (7)

These states form our computational basis for quantum computing.
Calculate matrix elements

Vr, r′ =

∫
dx

〈
{r′}

∣∣ : ϕ4(x) : |{r}⟩ (8)

between these states. Gives H as a 2nq × 2nq matrix
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Pauli Decomposition

To do the calculation on a NISQ device, we decompose the Hamiltonian as

H =
3∑

i1...inq=0

αi1...inq

(
σi1 ⊗ · · · ⊗ σinq

)
(9)

Any Hermitian matrix can be decomposed this way to yield real
coefficients αi1...inq .

For a generic dense Hamiltonian matrix, there will be ∼ 4nq nonzero
coefficients in this decomposition.
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Trotterisation

We use the Trotter-Suzuki approximation to first order. Error ∼ O(t2/n).

|ψ(t)⟩ = e−iHt |ψ(0)⟩ ≈

 ∏
i1,...,inq

e
−i t

n
αi1,...,inq

(
σi1

⊗···⊗σinq

)n

|ψ(0)⟩ . (10)

The exponential of each Pauli term can be implemented on a qubit-based
quantum device through a short sequence of single-qubit rotation gates
and cnot gates.

The number of gates needed per trotter step grows with the number of
nonzero αi1...inq coefficients. This is exponential growth.
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JLP Algorithm

In the two papers [S. Jordan, K. Lee, J. Preskill ’11], [JLP ’11], an
efficient quantum algorithm was presented for computing S-Matrix
elements in massive ϕ4 theory:

• Formulated as a Hamiltonian lattice theory (space discrete, time
continuous).

• The scalar field at each lattice site is also discretised. This is
necessary to make the Hilbert space finite.

• Many followups e.g. [N. Zemlevskiy ’24], [R. Konik et al ’24].
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Schematic Overview

The JLP algorithm simulates a particle collision in real time.

It proceeds in 5 main steps...
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The 5 Steps

1 Prepare vacuum of λ = 0 lattice theory [A. Kitaev, W. Webb ’08].

2 Excite wavepackets of free theory.

3 Adiabatically switch on λ to get interacting theory wavepackets.

4 Time evolve until wavepackets collide and collision products separate.

5 Measure particle count in final state.
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The 5 Steps

1 Prepare vacuum of λ = 0 lattice theory [A. Kitaev, W. Webb ’08].

2 Excite wavepackets of free theory.

3 Adiabatically switch on λ to get interacting theory wavepackets.

4 Time evolve until wavepackets collide and collision products separate.

5 Measure particle count in final state.

Comments:
• Quantum algorithm is exponentially faster than classical equivalents
at high precision or strong coupling.

• Computes 2 → n inelastic scattering. This is difficult for Euclidean
space Lüscher method.
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Generalising the JLP Algorithm to HT

What modifications are necessary in each of the 5 stages of the JLP
algorithm?

1 Preparing the vacuum of the free theory =⇒ Automatic in HT

2 Preparing free theory wavepackets =⇒ Easy in HT

3 Adiabatically switch on g to obtain interacting wavepackets =⇒ We
demonstrate for HT using quantum hardware.

4 Time evolve =⇒ We demonstrate using classical simulators.

5 Measure particles in final state =⇒ Straightforward in HT since
computational basis is eigenbasis of particle number (in free theory).
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Resource Costs

State of the art scattering simulations in ϕ4 have been performed using
120 qubits on IBM hardware [N. Zemlevskiy ’24].

Figure: From [JLP ’11] - number of qubits required to calculate 2 → 4 scattering
amplitude in 1 + 1d with error ϵ. Interparticle separation is r/a.
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Qubit Resources in HT

To simulate a collision with energy√
s, the max energy state in the

truncated basis in HT Emax, or the
lattice spacing should be

√
s ≪ Emax ≈ 1/a

The number of qubits needed for
lattice formulation:

N lattice
q = nb(L/a)

[N. Klco and M. Savage ’18]

2 4 6 8 10 12 14 16 18 20
Emax/M

100

101

102

103

N
q

NHT
q (HT)

NLat
q (Lattice)

Figure: Comparing qubits needed for the
lattice and HT formulations of scalar
field theory, with nb = 2, ML = 16.
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Preparing Free Theory Wavepackets

Consider single particle Gaussian wavefunctions with ⟨x⟩ = x0, ⟨p⟩ = p0
and variance ⟨x2⟩ − ⟨x⟩2 = δ2/2:

ψ(x) = N e−
(x−x0)

2

2δ2 e ip0x . (11)

We put this on the finite circle with little distortion provided that δ ≪ L,
and that x0 is far from the boundary.

A single particle state in the QFT can be built from the mom space
wavefunction using

|ψ⟩ =
∞∑

n=−∞
ψkna

†
n |0⟩ . (12)
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Projection Into Symmetry Subsector

Our initial state will be built from two well separated wavepackets at
points x0 − L/4 and x0 + L/4, with opposite p0:

|p0, x0, δ⟩ = N
∞∑

n1=−∞
n2=−∞

e i(kn2−kn1 )L/4e−ix0(kn1+kn2 )×

e−
δ2

2 [(p0−kn1 )
2+(p0+kn2 )

2]a†n1a
†
n2 |0⟩ . (13)

In contrast to the lattice, it is natural in HT to simulate the scattering
process in the zero momentum, parity even subsector of the QFT Hilbert
space:

|p0, δ⟩ = N
∞∑

n=−∞
(−1)ne−δ2(p0−kn)2a†na

†
−n |0⟩ . (14)
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Requirements for a Scattering State

• Wavepackets must be well separated with little overlap.

• Wavepacket group velocity vg ≈ p0/E0 should be bigger than
broadening rate δ̇ ≈ 1/ (E0δ).

Consistency Condition

1/p0 ≪ δ ≪ L (15)
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Efficient Preparation on Quantum Hardware

Initial State

|p0, δ⟩ = N ′
( Nmax∑

n=1

(−1)n
[
e−δ2(p0−kn)2 + e−δ2(p0+kn)2

]
|n,−n⟩

+
√
2e−δ2p20 |0, 0⟩

)
, (16)

• Retaining only Nmax terms introduces only exponentially small error.

• States can be reordered within the truncated basis so that the
two-particle states in Eq. (16) come first in the list.

• Represent on a subset of the qubits of length nsubq = ⌈log2(Nmax+1)⌉.
• Use quantum Shannon decomposition.
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Trapped Ions

We use the “aria-1” device from IonQ, with 25 qubits.

• Qubits are Yb-171+ ions.

• Longer coherence times and
higher 2Q gate fidelity.

• All to all connectivity.

• Gate operations must be applied
in series (rather than parallel).

Access provided by
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Free Theory State Preparation
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Figure: Probability of free wavepacket being measured in different H0 eigenstates.
Basis was truncated so that nq = 4, but only nsubq = 3 were manipulated.
Parameters: ML = 16, p0/M = 1.5, Mδ = 0.75. Circuit has 13 gates.
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Spatial Profile of the Wavepackets

The centre of mass is completely undetermined, but the separation
between particles in the 2-particle sector is not:

ρ(x1, x2) = |x1, x2⟩ ⟨x1, x2|
∣∣
P,P . (17)

• Depends only on x ≡ |x1 − x2|.
• Has periodicity x → x + L.

• Interference between terms with
separations ±L/2. Packets are
not interacting as ρ(x) is a
nonlocal operator.
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0.5
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(x
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δ Dependence

δ = 1.0

δ = 4.0

0 4 8 12 16
x

δ = 2.0

p0 Dependence

p0 = 0.9

p0 = 3.6
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Interacting Theory Wavepackets

Adiabatically increase the ϕ4 coupling g .
Incrementally increase g with each trotter step of time evolution.
Although free wavepackets are not energy eigenstates, a well separated
packet that is concentrated in momentum space is approximately an
eigenstate.
Avoid the Ising CFT critical point: g(t) < gc ∼ 2.5− 3 (e.g. [S. Rychkov,
L. Vitale ’14])
(Optionally) evolve back in time after every few Trotter steps to reduce
packet displacement and broadening.
Adiabatic time [JLP ’11]

τ ∼ J

γ2
√
ϵ
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Interacting Theory State Preparation
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Figure: Right panel shows probability of interacting wavepacket being measured in
different H0 eigenstates. Basis was truncated so that nq = 4. Parameters:
g = 2M2, ML = 16, p0/M = 1.5, Mδ = 0.75. Circuit has 134 gates. Left panel
shows free theory for comparison.
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Time Evolution Of Wavepackets
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Figure: Classical computation of ⟨ρ(x)⟩ in the interacting theory using nq = 10.
We have taken g = 2M2, p0/M = 2.5, Mδ = 0.75, a displacement of Mt = 1.5,
a Trotter step of Mδt = 0.01 and a ramp time Mτ = 1. Note that we have not
performed any extrapolation in Emax.
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4 Particle Production Cross Section

−5 0 5
x

0

1

2

3

4

5

6

T
im

e

Coupling g = 2.0

2-particle 4-particle >4-particles
Particle State

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

il
it

y

Before Collision

After Collision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure: Scattering driven particle production. We have used nq = 10, g = 2M2,
p0/M = 2.5, Mδ = 0.75, a displacement of Mt = 1.5, a Trotter step of
Mδt = 0.01 and a ramp time Mτ = 1. This is just a proof of principle: No
extrapolation has been attempted in Emax or in other simulation parameters.
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Summary

• New approaches are needed for extracting the predictions of many
different QFTs nonperturbatively.

• We presented nonperturbative HT formulations for ϕ4 theory.

• Near term progress in quantum computing will dramatically extend
the reach of the HT approach.

• HT requires fewer qubits than other approaches to quantum
simulation.

• We demonstrated quantum algorithms for time evolution and state
preparation on a NISQ era trapped ion quantum device.
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HT and Hamiltonian Lattice Generalities

HT Prioritises Symmetry

• Available when QFT has no known lattice formulation (e.g. exotic
CFT with relevant deformations).

• Exact spacetime symmetries: Translations, Rotations and
downstream: Chiral Symmetries, SUSY...

• Easier to impose conservation laws by removing entire sectors from
Hilbert space =⇒ fewer qubits.
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HT and Hamiltonian Lattice Generalities

HT Deprioritises Locality

• Nonlocal counterterms sometimes necessary for renormalisation.

• Hamiltonian includes almost all-to-all interactions between the
different qubits. Not the case for lattice Hamiltonians since qubits
representing distant lattice sites do not interact.

• Leads to a dense representation in terms of Pauli strings, poor circuit
depth scaling for time evolution using Suzuki-Trotter approach.

• Difficulty also encountered when simulating other quantum systems
that lack manifest locality, e.g. Matrix Models [M. Hanada et al ’20].

• Discussed in lightcone truncation context: [J. Liu , Y. Xin ’20],
[M. Kreshchuk et al ’20].
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Sparsity and Qubitization

For time evolution with sparse Hamiltonians, shallower circuits can be
found using post-trotter methods.

H enters the algorithm through “oracles”, black boxes which give the
position and value of nonzero matrix elements. [D. Berry, A. Childs ’15]

Efficient Simulation

queries = O
(
τ

log(τ/ϵ)

log log(τ/ϵ)

)
, (18)

2 qubit gates = O
(
τnq

log2(τ/ϵ)

log log(τ/ϵ)

)
. (19)

Sparsity - d is max number of nonzero entries in any row of H.
Time - τ ≡ d2||H||maxt .
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Sparsity in HT ϕ4 Theory
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Figure: Log-Log plot showing the growth in the number of nonzero matrix
elements in the truncated HT Hamiltonian with qubit number Nq. We find
d ≪ 2Nq throughout, indicating the Hamiltonian is sparse. The linear fit has the
form ln d = 3.6651(63) lnNq − 3.028(15).
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