

Recent results from CUORE and path towards CUPID

Hawraa Khalife (IRFU, CEA Paris-Saclay) On behalf the CUORE and CUPID collaborations PASCOS (Durham, UK) – 24 July 2025

Neutrinoless double beta decay

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

Neutrinoless double beta decay observation will:

- Ascertain the Majorana nature of neutrino ($v = \overline{v}$)
 - Provide information on neutrino mass scale and ordering
- Confirm lepton number violation
 - Not allowed in the SM \rightarrow physics beyond the SM
 - Matter-antimatter asymmetry explanation (Leptogenesis)

Energetically possible for **35 nuclei** Experimentally relevant: ⁸²**Se**, ⁷⁶**Ge**, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Need to find single events in a ton of isotope × year(s) of exposure!

Enhancing the sensitivity to 0vββ

- High isotopic abundance of the ββ nuclide
 - \circ enrichment of $\beta\beta$ source
- High detection efficiency
 - "detector = $\beta\beta$ source"
- Large detector mass
 scalability of a technology to a tonne-scale
- Long term measurement
 - $\circ~$ stable operation for \sim 5-10 yrs
- Extremely low background in the ROI
 - underground measurement \rightarrow muon reduction
 - passive and active shields
 - high radio-purity of detector components
- High detector performance
 - high energy resolution
 - particle identification capability
 - fast time response

Detection technique: bolometers

• Wide choice of absorber materials

CUORE in a nutshell

CUORE: Cryogenic Underground Observatory for Rare Events

Nature 604, 53–58 (2022)

- 130 Te with a $Q_{\beta\beta}$ = 2527 keV
- Natural isotopic abundance: ~34%
- Embedded in TeO₂ crystal
- 988 crystals
- 19 towers with 13 floors each
- 206 kg of ¹³⁰Te (total: 742 kg)

The first tonne-scale bolometric experiment

Hosted in Gran Sasso underground laboratory

Shielding from cosmic rays

CUORE results

- Taking data at LNGS (Italy) at ~ 12-15 mK since 2017
- Currently > 2.9 ton·yr exposure (raw TeO₂)
- CUORE has analyzed 2 ton·yr of data (TeO₂ exposure)
- Energy resolution FWHM at $Q_{\beta\beta}$ is ~7.3 keV
- Bkg index in ROI ~1.4×10⁻² ckky
- Best limit on ¹³⁰Te $0\nu\beta\beta$: $m_{\beta\beta} < (70-240)$ meV

<u>(arXiv:2404.04453)</u>

Data reconstruction:

1000

2000

 10^{-4}

• Obtain background model, which will guide the design and optimization for future bolometric experiment (Phys. Rev. D 110, 052003)

3000

Energy [keV]

4000

5000

6000

• Study rare decays ($2\nu\beta\beta$ - ¹³⁰Te): most precise measurement (arXiv:2503.24137)

 $T_{1/2}^{2\nu} = \left(9.32 \,{}^{+0.05}_{-0.04}\,\text{stat.}\,{}^{+0.07}_{-0.07}\,\text{syst.}\right) \times 10^{20} \text{ yr}$

CUORE lessons

contaminations and ¹³⁰Te $2\nu\beta\beta$

CUORE is not background free

~ 50 cnts/yr in the ROI, dominated by surface α background (90%) from crystal, PTFE and copper

Improvements:

- Discrimination between α and β/γ or between surface and bulk is needed
- Isotope with a $Q_{\beta\beta}$ > 2615 keV
- a BI < 10⁻⁴ ckky is achievable with the CUORE infrastructure

Three important messages from CUORE

- A tonne-scale bolometric detector is technically feasable
- Analysis of ~1000 individual bolometers is handable
- An infrastructure to host a bolometric nextgeneration $0\nu\beta\beta$ experiment exists

From CUORE to CUPID: scintillating bolometers

The CUPID experiment

- $Li_2^{100}MoO_4$ scintillating crystal 95 % enrichment in ^{100}Mo
- $Q_{\beta\beta} = 3034 \text{ keV}$
- CUPID-Mo demonstrated an excellent α rejection (> 99.9%) and energy resolution at $Q_{\beta\beta}$ (7.4 keV FWHM) (Eur. Phys. J. C 82, 1033 (2022))

	CUPID performance aim
Energy resolution at $Q_{\beta\beta}$	5 keV FWHM
Background index	10 ⁻⁴ counts/(keV kg yr)
$T_{1/2}^{0V}$ exclusion sensitivity (90% C.L.)	1.4×10 ²⁷ yr
LD baseline resolution	< 100 eV RMS
LY	0.3 (keV/MeV)

- 1596 Li₂MoO₄ crystals (45×45×45 mm)
- 1710 Ge wafer light detectors
 - With SiO antireflective coating
 - Neganov-Trofimov-Luke effect (NTL) for an enhanced thermal signal
- Arranged in 57 towers of 14 floors
- 240 kg of ¹⁰⁰Mo (> 95% enrichment)
- Total mass: 450 kg
- Pre-production in China (SICCAS) is ongoing

CUPID projected background

What we learnt from CUORE, CUPID-Mo and CUPID-0 leads to an expected background index (BI) < 1×10⁻⁴ counts/(kg keV yr)

Pile-up rejection

Rely on NTL light channel (which is faster) to reject pileups though PSD

NTL LDs test @ LSC, Spain arXiv:2507.15732 8/9 can be biased > 80 V:

- Gain on S/N: 8.5 @ 80 V
- Fast signals: rise-time close to **0.54 ms**
- Pileup BI = 5.9e-5 ckky (projected to CUPID geometry), close to CUPID goal

Future test: Optimized electrodes geometry

Mechanical design test

GDPT (gravity design prototype tower), is the first tower of CUPID-baseline tested at LNGS (Italy) (arXiv.2503.04481):

- 28 Li₂MoO₄ crystals arrange in 14 floors, 2 crystals each
- 30 Ge light detectors

Main results

- Validation of the assembly procedure
- Innovative gravity based approach, copper/LMO ratio < 20%
- Good temperature stability (±0.5 mK at 10 mK)
- (6.6 ± 2.2) keV median FWHM @2615 keV (close to CUPID goal)
- 0.36 keV/MeV light yield (LY) (fulfills CUPID goal)
- Some excess noise on the LD -> changes to the LD assembly structure for the next test

Next test: VSTT (Vertical Slice Test Tower)

- NTL LDs for pileup rejection
- Changes to the LD holding system to mitigate the noise

CUPID: Staged deployment

The collaboration decided to move to a staged deployment for CUPID implementation

CUORE cryostat upgrade

Sensitivity: from stage I to full CUPID and beyond

The most sensitive experiment worldwide at the beginning of the next decade

Conclusions

- CUORE is the first tonne-scale operating cryogenic 0vββ decay experiment with steady data taking
- CUORE has analyzed 2 ton·yr (TeO₂) of data, with the best limit on ¹³⁰Te $0\nu\beta\beta$
- CUORE opens the way for future bolometric experiment with an existing infrastructure and a known background model
- CUPID takes further steps to fully explore IH region
- CUPID technology is mature, leverages years of experience with CUORE
- Staged deployment: CUPID Stage-I can take data at the end of this decade and has world leading science reach
- CUPID approach is scalable to normal hierarchy region