The 30th International Symposium on Particles, Strings and Cosmology PASCOS 2025 21 – 25 July 2025 Durham, UK

New physics searches at the NA62 experiment

On behalf of the NA62 collaboration

Artur Shaikhiev (<u>artur.shaikhiev@cern.ch</u>) Lancaster University

NA62 experiment (decay-in-flight)

- * Main goal is measure ultra rare kaon decay $K^+ \rightarrow \pi^+ \nu \nu$ with 10% precision
- * SM prediction: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$

[Buras et al., EPJC 82 (2022) 7, 615]

* Experimental measurements $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ [E949/E787 PRL 101 (2008) 191802] $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (13.0^{+3.3}_{-3.0}) \times 10^{-11}$

[NA62, JHEP02 (2025) 191] see M.Mirra talk for details

Run1, Physics Run 2016 — 45 days 2017 — 160 days 2018 — 217 days

- Run2, Physics Run
- 2021 85 days
- 2022 215 days
- 2023 150 days
- 2024 204 days
- 2025 ongoing now

2026 — end of data taking

NA62 broad physics program

- * Precision measurements: $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \mu^-$, $K^+ \rightarrow \pi^0 e^+ \nu \gamma$
- * Lepton flavour/number violation decays: $K^+ \rightarrow \pi^- l^+ l^+$, $K^+ \rightarrow \pi^\pm \mu^\mp e^+$, $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$, ...
- Exotic particles searches
 - * K⁺ \rightarrow *l*⁺N, $\pi^0 \rightarrow \gamma A'$
 - NA62 dump mode (decays into SM particles)
 - * $K^+ \rightarrow \pi^+ X$ (arXiv:2507.17286 published yesterday!)
 - * X is invisible: decays into dark matter particles or neutrinos or lifetime is long enough to escape the detector
 - * X decays into SM particles
 - * $\pi^+ \rightarrow e^+ N$ (arXiv:2507.07345v1 recent publication)

This talk

Unseparated secondary beam:

- K⁺(6%), π⁺(70%), p(24%)
- Nominal beam particle rate at GTK3: 750 MHz;
- Average beam particle rate during 2018: 450 500 MHz
- Momentum: 75 GeV/c

The NA62 detector

- Timing between sub detectors O(100 ps)
- Kaon ID and direction (KTAG, GTK)
- Particle ID and direction (STRAW, RICH, LKr, HASC, MUV): μ^+ rejection O(10⁷)
- Photon veto (LAV, LKr, IRC, SAC): $\pi^0 \rightarrow \gamma \gamma$ rejection O(10⁷)

$K^+ \rightarrow \pi^+ X$, X is invisible

Interpretation (arXiv:2507.17286) of K⁺ $\rightarrow \pi^+\nu\nu$ result, 2016–2022 data [JHEP02 (2025) 191]. Peak search: K⁺ $\rightarrow \pi^+\nu\nu$ is the main background and number of background events is estimated using SM branching ratio.

Model-independent constraints

 $K^+ \rightarrow \pi^+ X, X \rightarrow \mu^+ \mu^-$

Interpretation (arXiv:2507.17286) of K⁺ $\rightarrow \pi^+\mu^+\mu^-$ result, 2017–2018 data [JHEP 11 (2022) 011]. Peak search: data driven background estimation — sideband fits with masked signal region for each mass hypothesis.

$K^+ \rightarrow \pi^+ X, X \rightarrow \gamma \gamma$

Interpretation of K⁺ $\rightarrow \pi^+ \gamma \gamma$ result, 2017–2018 data set [PLB 850 (2024) 138513]. Peak search: K⁺ $\rightarrow \pi^+ \gamma \gamma$ is the main background and number of background events is estimated using MC simulations.

Benchmark	BSM particle (X)	Туре	Coupling to SM	Search
BC1	dark photon (A')	vector	ε	$\mu^+\mu^-$
BC2	dark photon (A')	vector	ε	invisible
BC4	dark scalar (S)	scalar	θ	invisible, $\mu^+\mu^-$
BC4-inv	dark scalar (S)	scalar	θ	invisible
BC10	axion-like particle (a)	pseudoscalar	C_{ff} (to fermions)	invisible, $\mu^+\mu^-$
BC10-inv	axion-like particle (a)	pseudoscalar	C_{ff} (to fermions)	invisible
BC11	axion-like particle (a)	pseudoscalar	C_{GG} (to gluons)	invisible, $\gamma\gamma$

$$\mathcal{B}(K^+ \to \pi^+ X) = \frac{p_X}{8\pi\Gamma_K m_K^2} |\mathcal{M}|^2$$

where $\Gamma_K = 5.32 \times 10^{-14}$ MeV is the K^+ decay width, p_X is the momentum of X in the kaon rest frame, and m_K is the K^+ mass. The matrix element \mathcal{M} depends on the hidden-sector scenario and is proportional to the coupling strength.

BC2

Another collaboration with theorists using NA62 data set arXiv:2503.05865

$\pi^+ \rightarrow e^+ N \text{ search} (2017-2024)$

* Use the main K⁺→π⁺νν trigger. Despite of kaon ID in the trigger pions can pass by due to an accidental time-coincidence with a beam kaon. Single positron selection with no other activity.
arXiv:2507.07345v1 extract number of kaon decays

$\pi^+ \rightarrow e^+ N \text{ search} (2017-2024)$

 Peak search: data driven background estimation — sideband fits with masked signal region for each mass hypothesis

Summary

- * World-leading constraints on the K⁺ $\rightarrow \pi^+$ X decays (X is visible or invisible) are set.
 - * Model-independent constraints can be used for any new physics model.
- * New search for heavy neutrinos in $\pi^+ \rightarrow e^+$ N decay is performed.

BACKUP

$K^+ \rightarrow \pi^+ X$, X is invisible

Interpretation of K⁺ $\rightarrow \pi^+\nu\nu$ result with 2016–2022 data set [JHEP02 (2025) 191]. Peak search: K⁺ $\rightarrow \pi^+\nu\nu$ is the main background and number of background events is estimated using SM branching ratio.

Model-independent constraints

 $K^+ \rightarrow \pi^+ X, X \rightarrow \mu^+ \mu^-$

Interpretation of K⁺ $\rightarrow \pi^+\mu^+\mu^-$ result with 2017–2018 data set [JHEP 11 (2022) 011]. Peak search: data driven background estimation — sideband fits with masked signal region for each mass hypothesis.

Model-independent constraints

$K^+ \rightarrow \pi^+ X, X \rightarrow \gamma \gamma$

Interpretation of K⁺ $\rightarrow \pi^+ \gamma \gamma$ result with 2017–2018 data set [PLB 850 (2024) 138513]. Peak search: K⁺ $\rightarrow \pi^+ \gamma \gamma$ is the main background and number of background events is estimated using MC simulations.

 $z = (P_K - P_\pi)^2 / (m_K)^2 = (m_{\gamma\gamma} / m_K)^2$

Model-independent constraints