Quantum Devices for Dark **Matter Studies**

Prof. Adrian Bevan a.j.bevan@qmul.ac.uk

- Also see recent workshops and conferences including: QMUL-SNOLab workshop: <u>https://indico.cern.ch/event/1345184/overview</u> (SNOLab) Pisa Meeting on Advanced Detectors: <u>https://agenda.infn.it/event/37033/overview</u> (Elba) Identification of Dark Matter: <u>https://agenda.infn.it/event/39713/overview</u> (L'Aquila)

- GUINEAPIG 2024: https://indico.triumf.ca/event/521/timetable/#20240820

Overview

- Motivation
- Substrates
- Technologies
 - Transition Edge Sensors (TES)
 - Kinetic Induction Detectors (KIDs)
 - Coulomb Blockade Thermometers (CBTs)
 - Superconducting nanowire single photon detectors (SNSPDs)
 - Nanotube resonators
- Requirements
- Summary

Motivation

What is the nature of dark matter?

- We still don't have an answer to this question after almost 100 years.
- Is it a particle ?
 - If so what: WIMP, Axion, something else?
- Is it an astrophysical dark object?
 - Primordial Black Hole, domain wall, … ?
- Is it a combination of things?
 - 5% of the energy of the universe is visible
 - About 23% is dark matter
- We have plenty of candidates that could contribute to the solution

Existing constraints on dark matter

 Model dependent direct search constraints for particle and astrophysical DM rule out much of model parameter space

Cirelli, Strumia, Zupan, arXiv:2406.01705

Existing constraints on dark matter

 Model dependent direct search constraints for particle and astrophysical DM rule out much of model parameter space

- Dark photon sensitivity to different crystals cover the ~0.01 eV to 100's eV range
- Complements large direct detection experiments
- Huge amount of interest and growing activity in this area
- Quantum tech enables this paradigm shift
- Plot assumes 25meV sensitivity a challenge for current technologies

Sensitive to (ultra)dark matter

Ranges of applicability of different quantum sensor techniques to searches for BSM physics

Adrian Bevan 7

Substrates

Substrates

• Various crystal lattices are proposed: Si, GaAs, Sapphire (Al₂O₃)

Griffin et al, arXiv:1807.10291

Isotropic crystals are blind to dark matter direction

- Anisotropic crystals like sapphire, are directionally dependent
 - Directional detection is highly desirable for many reasons including background rejection

Substrates

- Anisotropic signal detection could enable directional dark matter detection
- Would allow to probe into the neutrino fog, scaling better than \sqrt{t}
- Daily modulation of any dark matter signal has mass sensitivity

Griffin et al, arXiv:1807.10291

Transition Edge Sensors (TES)

Adrian Bevan 11

• Use the temperature dependent resistance of a superconducting material to sense the passage of radiation

- Under normal conditions power dissipated is constant
- Interaction with dark matter adds energy that changes the power
- TES resistance increases, current drops
- e.g. Use inductor to couple TES to a squid array to sense change in current & read out / amplify signal

Example: SuperCDMS

• Experiment at SNOLab based on TES Technology (Si/Ge crystals)

- 10 15 mK athermal phonon sensors
- Detect Luke phonons in the TES
- Amplify and process signals to extract energy

Example: SuperCDMS

• Experiment at SNOLab based on TES Technology (Si/Ge crystals)

- 10 15 mK athermal phonon sensors
- Detect Luke phonons in the TES
- Amplify and process signals to extract energy

SuperCDMS construction at SNOLAB

SuperCDMS SNOLAB LU, UofT // S. Zatschler August 20, 2024

17/26

Kinetic Induction Detectors (KIDs)

Adrian Bevan 16

KIDs

- Superconducting phonon detectors for single phonon counting with a high temporal precision
- Used for X-ray astronomy, gaining traction in particle physics
- Change in surface impedance resulting from an incoming phonon breaking up a cooper pair
 - (b) Kinetic inductance detector

- Energy deposits result in a frequency shift that can be measured
- Can provide a rate measurement for any dark matter signal

BULLKID-DM

• Example: silicon detector based KID array for DM searches

BULLKID: Kinetic Inductance Detectors coupled to silicon absorbers [1]

- Phonon-mediated detection of nuclear recoils
- Scalable and highly segmented silicon absorber
- 145 5x5x5 mm³ silicon cubes per 4' wafer
- Target mass is 0.6 Kg (16x 4' wafers)

3x 3-inch Demonstrator

- Intermediate step before moving to a full scale array
- 3x **3-inch** silicon wafers for a total of **180 units and 61g** of active silicon

KIDs on Ge

4-inch design

Coulomb Blockade Thermometers (CBTs)

CBTs

- Amplitude shift related to phonon energy measured in a detector
- Tailor designs to control thresholds with theoretical range down to 25 meV sensitivity (thickness of superconducting layer)
- Can provide an energy measurement for any dark matter detected
- Relaxation times of ~1µs possible

(c) Coulomb blockade thermometer

Autti et al., PRL 131.077001

Example: QuaDMOS

 Proposed experiment using a 1.2kg stack of sapphire substrates with 2048 KID and CBT pixels

 Potential to test new technologies in Boulby and work toward improving dark matter limits, aligned with mass regions of interest for dark photon models.

Bevan, GUINEAPIG 2024

Superconducting nanowire single photon detector (SNSPD)

SNSPD

 Nanowire change in resistance from signal is amplified by an impedance amplifier to generate signal pulses

https://www.idquantique.com/ An Overview,a two-dimensional detector plane.

Example using the LAMPOST* concept

- Focus light converted from a dark photon conversion to a γ onto the SNSPD

- Device sandwiched layers of SiO₂ and amorphous silicon.
- Dark count rate ~10⁻⁶
- *ε* ~ 30 %
 - (achieved close to maximum theoretical efficiency)

Chiles et al. PRL 128 231802

*Light A Multilayer Periodic Optical SNSPD Target

ORCID-0000-0002-4105-9629

Adrian Bevan 24

Example using the LAMPOST concept

- Able to improve limits by a factor of 2 for a specific low mass dark photon hypothesis
- Stacking construct of this experiment gives approximately x30 improvement over earlier designs
- Validates the efficacy of SNSPDs as a dark matter detector technology

Nanotube resonators

Adrian Bevan 26

ORCID-0000-0002-4105-9629

Quantum Sensors for the Hidden Sector

- QSHS focusing on axion search using quantum sensors
- quantum amplifiers key component for detecting signals

• Also looking for other ways to detect signals, e.g. nanotube resonators in superfluid He

Carbon nanotube resonators for measuring superfluid helium

Laird QMUL-SNOLab Workshop

Requirements

Adrian Bevan 28

Requirements

- Different technologies have different requirements, but some common infrastructure needed
- Dilution fridge running down to ~10 mK
- Understanding of the intrinsic radiation background of the lab, the setup and detector material
 - Good design to ensure radio purity of detector and key infrastructure components
 - Neutron background constraints: both fast and thermal neutrons
 - Radon background constraints
- (beyond axions) low background environment to search for signals
- + ideally an underground facility to fabricate detector components prior to installation (minimise cosmogenic activation)

e.g. CUTE facility at SNOLab

CUTE: Cryogenic Underground TEst facility

- Located 2 km underground at SNOLAB
- Includes water, lead, and HDPE shielding to achieve a background level of less than 10 DRU
- Custom designed suspension system proven to significantly reduce vibrational noise

Facility managed and maintained by SNOLAB; made available to the community through a proposal process

c/o Yan Liu (UBC/TRIUMF)

Summary

Adrian Bevan 31

Summary

- Quantum sensing technology is already making an impact on dark matter direct detection for light and ultra light systems
- The active mass of detectors is small compared to the Nobel liquid detectors, so not competitive for WIMP searches
- Plenty of other opportunities to explore, including directional detectors
- Need dilution fridges (preferably modified) in a low background environment like the Stage 1 expansion
- Some technologies are "established" and others are concepts for DM detectors
- Lots of promise... just need funding to match the problem space

Backup

ORCID-0000-0002-4105-9629

Adrian Bevan 33

Absorption (Dark Photon, ALP): \sim 1 eV – 0.5 MeV

Electron Recoil (ER): \sim 0.5 MeV – 10 GeV Migdal & Bremsstrahlung: $\sim 0.01 - 10 \,\text{GeV}$ HV Detector (LT, NR): Low Threshold (LT) NR: $\gtrsim 1 \,\text{GeV}$ Traditional Nuclear Recoil (NR): $\geq 5 \,\text{GeV}$

 \sim 0.3 – 10 GeV

SuperCDMS: A broadband DM search

peak search (HV) no NR/ER discrim. (HV) no NR/ER discrim. (HV + iZIP) no NR/ER discrim. (HV) limited NR/ER discrim. (iZIP) full NR/ER discrim. (iZIP)

SuperCDMS

c/o Stefan Zatschler (Laurentian/Toronto)

SuperCDMS

Lots of detailed work on simulation: See: <u>Zatschler, GUINEAPIG 2024</u>

QET – **Q**uasiparticle trap assisted **E**lectrothermal feedback **T**ransition edge sensor

https://figueroa.physics.northwestern.edu

Analytical model: PRD 109, 112018 (2024)

Why sapphire?

- Anisotropic polar crystal
 - 10 atoms in a primitive cell, so 30 phonon modes: 3 acoustic and 27 optical modes
 - Directional detection capability that would lead to daily modulation with sidereal time
- "broad" range of energies accessible in the meV range for DM scattering producing optical phonons
- Able to detect dark photon interactions that kinetically mix with the standard model photon

Why sapphire?

- Anisotropic polar crystal
 - 10 atoms in a primitive cell, so 30 phonon modes: 3 acoustic and 27 optical modes
 - Directional detection capability that would lead to daily modulation with sidereal time
- "broad" range of energies accessible in the meV range for DM scattering producing optical phonons
- Able to detect dark photon interactions that kinetically mix with the standard model photon

Phonon band structure for Sapphire (Al2O3) computed using PHONOPY, from S. Griffin et al.

$$\omega = c_s |\mathbf{q}| \lesssim 2c_s m_X \sim 7 \, meV \times \frac{m_X}{100 \, keV}$$

- c_s speed of sound in material
- $\tilde{\mathbf{q}}$ is the wavevector
- \bar{v} is the DM velocity
- m_X DM candidate mass

 $c_s(\text{Al}_2\text{O}_3, |\mathbf{q}| \sim 0) = 10^4 (m/s)$

Queen Mary

University of London

e.g. QuaDMOS detector concept

- A 1.2 kg Sapphire detector comprising of a stack of 8 wafers with:
 - Kinetic Induction Detectors
 - + Coulomb Blockade Thermometers on a graphene-based circuit

- Measure athermal phonons from dark matter interactions with the sapphire
- KID detection limit is governed by the small energy gap of Cooper pairs
- CBT detection limit is governed by raising the electron temperature
- Use a frequency multiplexed sensor array of 2048 pixels in 1.2 kg of Al₂O₃

• Working with the custom foundry on wafer production

QuaDMOS detector concept

- Dilution fridge:
 - Operate at sub 10mK temperatures
 - Copper electroplating of key components to mitigate background to help develop a new product for the dilution fridge supplier
 - Standardise readout for a test facility to test at surface and prepare for the mine
 - Detector made and tested on surface; loom transferred to the mine.
 - If Boulby had an underground quantum lab we would assemble the detector underground to mitigate material activation; instead plan to use a surface lab at QMUL.
 - Minimal maintenance required for operation

The 1.2 kg detector will be operated at 10 mK, suspended from this plate.

QuaDMOS detector concept

- Boulby is a low background environment, however neutron background will mimic signals
- Measurements of fast neutrons have been made previously, but the thermal neutron background is not known V. A. Kudryavtsev et al., hep-ex/0301038. (2003)

- Use a well established approach for neutron shielding using commercial off the shelf parts from a nuclear industry supplier (modular plastic water tanks).
- Develop novel technology for "real time" thermal neutron measurements using existing commercial off the shelf DAQ; tailoring sensors to the low background environment.

ORCID-0000-0002-4105-9629

1.3

1.2

1.1

0.9

0.8

0.7

0.0

 $\langle W \rangle ^{1.0}$

 $m_X=25$ keV

 $m_X = 50 \text{ keV}$

 $m_X=75 \text{ keV}$ $m_X=100 \text{ keV}$

0.2

Directional detection

- The anisotropic sapphire crystal results in directional dependence of the cross section, leading to sidereal time daily modulations of signal
- Example plots from Griffin et al.

A' mediator

0.8

1.0

t/day

0.6

0.4

FIG. 16. Distributions of the modulation amplitude, assuming 2500 expected events.

FIG. 17. Expected number of events needed for 2σ observation of the daily modulation.

 10^{2}

 m_{γ} [keV]

 10^{3}

 10^{5}

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{1}

 $N_{\rm ev}$