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Introduction

▶ An open problem in theoretical physics is the relationship
between theories of gravity and theories of particle physics.

▶ The last 50 years have seen various attempts to resolve this
problem: String Theory, Quantum Loop Gravity, etc ...

▶ Though none of these attempts have completely solidified the
relationship between gravity and particle physics, we have
learned a great deal from these investigations.



Particle Physics and Gauge Theories

The standard model of particle physics is described by gauge
theories; quantum field theories which incorporate local symmetries
defined at every point in spacetime.

The most relevant of these theories for us is the theory of quarks,
gluons and the strong nuclear force: Quantum Chromodynamics.

We can also remove the quarks from QCD to receive a non-abelian
gauge theory known as Yang-Mills theory.

QCD Yang-Mills

Remove
Quarks



Gravity

▶ Currently, the best theory we have to describe gravity is
general relativity .

▶ Recent experimental results on black holes and gravitational
waves has increased interest in the subject.

▶ Gravity is the only fundamental force that we cannot
comfortably combine with quantum mechanics.

▶ Gravity is an example of a non-renormalisable theory.



Quantum Field Theory and Interactions

Scattering amplitudes in quantum field theory are quantities
related to the probability for an interaction (also known as a
scattering process) between particles to happen.

|f〉|i〉

▶ Number of (external legs) points → Number of arrows going
in and out.

▶ Number of Loops → Number of “self interactions”.



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1

︷ ︸︸ ︷
gm−2+2L

Coupling Constant

∑
i

∫ L∏
l=1

dDℓl
(2π)D

1
Si

cini∏
ij dij

, (1)



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L

Sum over all
distinct

interactions (diagrams)∑
i︸︷︷︸

∫ L∏
l=1

dDℓl
(2π)D

1
Si

cini∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

︷ ︸︸ ︷∫ L∏
l=1

dDℓl
(2π)D

Integral over loop momenta lI

1
Si

cini∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

∫ L∏
l=1

dDℓl
(2π)D

Symmetry Factor
to prevent

loop diagram
overcounting︷︸︸︷

1
Si

cini∏
ij dij

,
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Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
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BCJ Duality

It turns out the kinematic numerators (ni) can be made to obey
(mirroring the colour factors ci):

ci + cj + ck = 0 (2)
ni + nj + nk = 0 (3)

This has become known as BCJ Duality (0805.3993, 1004.0476).
Importantly, equation (3) implies the existance of structures known
as kinematic algebras!

This allows us to write down relevant scattering amplitudes in
quantum gravity.



Developing a Double Copy for Scattering amplitudes

We can promote gravity to a quantum field theory (ignoring issues
with renormalizability), to write down a scattering amplitude with
L loops and m points:
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ni ñi∏
ij dij

, (4)

For:

κ =
√

32πGN



Developing a Double Copy for Scattering amplitudes
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Developing a Double Copy for Scattering amplitudes

Comparing both expressions:
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Double Copy for scattering amplitudes

We can turn the gauge theory amplitude into the gravity amplitude
via the following replacements:

M(L)
m = A(L)

m

∣∣∣ ci→ñi
g→κ/2

= iL−1
(κ

2
)m−2+2L∑
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∫ L∏
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dDℓl
(2π)D

1
Si

ni ñi∏
ij dij

,

(5)
We then make the choice ni ≡ ñi .

This is known as the Double Copy.



The Classical Double Copy

▶ The double copy can be extended to produce dualities
between exact classical solutions (classical yang-mills and
general relativity).

▶ The first instance of the classical double copy is the so-called
Kerr-Schild Double Copy (1410.0239, 1606.04724).

▶ This relates gauge fields in classical yang mills (Aa
µ) with

exact linearized vacuum solutions to the Einstein equations
(hµν). Where:

gµν = ηµν + κhµν (6)



The Weyl Double Copy

▶ The Kerr Schild Double Copy only applies to Kerr Schild
Solutions in General Relativity.

▶ We can extend this relationship to work for broad class of GR
exact solutions, in a framework known as the Weyl double
copy (1810.08183).

▶ The Weyl double copy relates spinor quantities in General
Relativity to their counterparts in Electromagnetism.

▶ This relationship has only been seen to work for Petrov type
D and N vacuum Spacetimes.

▶ We can convert tensorial objects into spinors using the
Infeld-van der Waerden symbols σµ

AȦ.



2-Spinor Formalism

▶ Normally, field theorists tend to work in the language of
tensors.

▶ However, another formalism exists in the language of 2
component (or Weyl)-spinors λA and their complex
conjugates λ̃Ȧ.

▶ We can also define their duals λA and λ̃Ȧ respectively.
▶ We raise and lower spinorial indices using the 2-dimension

Levi-Civita symbol (εAB, εAB, εȦḂ, εȦḂ).
▶ We can also build multi-indexed objects under is formalism

(such as FAȦBḂ).



2-Spinor Formalism

For our purposes, we define:

σµ

AȦ = (I2×2, σz, σx , iσy ) (7)

Where σx , σy , σz are the standard Pauli matrices and I2×2 is the 2
dimensional identity matrix.

The advantage of using spinors is that we can see things that
otherwise would be hidden in the tensor language.



Constructing The Weyl Double Copy

Converting the Electromagnetic Field Strength tensor Fµν into
spinors we receive:

FAȦBḂ = σµ

AȦσν
BḂFµν

= ϕABεȦḂ + ϕ̃ȦḂεAB (8)

Where ϕAB is the Maxwell Spinor.

We can obtain ϕAB directly by:

ϕAB = 1
2FABĊ

Ċ (9)



Constructing The Weyl Double Copy

For vacuum solutions (Rµν = 0), the Riemann tensor reduces to
the Weyl tensor:

Rµνρλ = Wµνρλ (10)

Converting Wµνρλ into a spinor we receive:

WAȦBḂCĊDḊ = σµ

AȦσν
BḂσρ

CĊσλ
DḊWµνρλ

= ΨABCDεȦḂεĊḊ + Ψ̃ȦḂĊḊεABεCD (11)

We can obtain ΨABCD from WAȦBḂCĊDḊ by:

ΨABCD = 1
4WAȦBḂCĊDḊεȦḂεĊḊ (12)



Constructing The Weyl Double Copy

Thus for certain vacuum solutions in general relativity yields the
result:

ΨABCD =
ϕ(ABϕCD)

S (13)

Where S is some scalar which is a solution to the equation of
motion of Biadjoint Scalar Theory.

This relationship is known as the Weyl Double Copy.

The Weyl Double Copy works for Exact ”Linear” solutions to the
Einstein equations.



Einstein-Maxwell Gravity

▶ Einstein-Maxwell gravity is a theory which allows for the
matter inside our spacetime to be electromagnetically charged.

▶ For non-vacuum solutions, the theory admits a Riemann
Curvature Spinor RAȦBḂCĊDḊ, given in the form:

RAȦBḂCĊDḊ = ΨABCDϵȦḂϵĊḊ + Ψ̄ȦḂĊḊϵABϵCD + ΦABĊḊϵȦḂϵCD

+Φ̄ȦḂCDϵABϵĊḊ + 2Λ
(
ϵACϵBDϵȦĊϵḂḊ − ϵADϵBCϵȦḊϵḂĊ

)
(14)



Weyl Double Copy for Einstein-Maxwell Gravity

▶ It was conjectured in (2210.16339, 2110.02293) that one
could write down a Weyl Double Copy like formula for
non-vacuum Einstein-Maxwell gravity:

ΨABCD =
m∑

n=1

1
ϕ(n) Φ(n)

(ABΦ(n)
CD), (15)

▶ The right-hand side contains a ”tower” of electromagnetic
spinors Φ(n)

AB and scalar fields ϕ(n).
▶ The n = 1 term corresponds to the traditional vacuum Weyl

double copy.



Weyl Double Copy for Einstein-Maxwell Gravity

▶ Each n > 1 electromagnetic spinor corresponds to a field
strength F (n)

µν satisfying a non-vacuum Maxwell equation

∂µF (n)
µν = j(n)

µ . (16)

▶ Each scalar field n > 1 ϕ(n) satisfies a non-vacuum equation
for some charge density ρ

(n)
S :

∂2ϕ(n) = ρ
(n)
S (17)

▶ How can we systematically prove these results?



The Double Copy: Momentum to Position space

▶ The Double Copy for classical (position) solutions and for
scattering amplitudes (momentum) are related to each other
by special integral transforms. (2208.08548)

▶ Using this relationship, we can systematically derive Weyl
Double Copy formulas from scattering amplitudes in a
three-stage process.

▶ In particular, the above discussion must be carried out in
(2, 2) signature. (n.b It is always possible to analytically
continue to any choice of signature after one has obtained the
final classical fields!)



Systematically deriving the Weyl Double Copy

(i) Express spinorial solutions of (linearised) classical equations
for scalar, gauge and gravity theory as inverse Fourier
transforms of momentum-space solutions.

(ii) One may transform the momentum integral to certain spinor
variables, and carry out some of the integrals to yield an
intermediate twistor-space representation of each classical
solution. This step reproduces the Twistor Double Copy
(2012.02479, 2103.16441).

(iii) The remaining integral can be carried out to yield
position-space representations of each classical solution, with
their principal spinors clearly identified. These solutions are
then found to obey the Weyl double copy.



Stage 1: Inverse Fourier Transforms

▶ Another way to obtain these inverse Fourier transforms of
momentum-space solutions is to consider the sources of these
fields (2112.05111).

▶ For our purposes, we choose spherically symmetric and static
sources/currents for each field type (scalar, vector, tensor) :

ρS = ρ(x), jµ(x) = ρ(x)uµ, T µν(x) = ρ(x)uµuν , (18)

▶ Which in momentum space is given by:

ρ̃S(k) = δ(u · k)J (k⃗), j̃µ(k) = δ(u · k)J (k⃗)uµ,

T̃ µν(k) = δ(u · k)J (k⃗)uµuν , (19)



Stage 1: Inverse Fourier Transforms

The Scalar Field pertaining to S:

ϕ(x) =
∫ d4k

(2π)4 δ(u · k)J (k⃗)
k2 e−ik·x . (20)

The Electromagnetic Field Strength Tensor:

F µν(x) =
∫ d4k

(2π)4 k [µuν]δ(u · k)J (k⃗)
k2 e−ik·x . (21)

The Riemann Curvature Tensor:

Rµνρσ(x) = κ

∫ d4k
(2π)4

[
Uρ[µkν]kσ − Uσ[µkν]kρ

] J (k⃗)
k2 e−ik·x ,

(22)



Stage 1: Inverse Fourier Transform

▶ Where uµ is its 4-velocity:

uµ =


1
0
0
0

 (23)

▶ ρ(x) represents the appropriate charge density, whereas it will
be an energy density in gravity.

▶ k is the 4-momentum kµ = (k0, k⃗) in a stationary frame, with
k0 = u · k.

▶ Where in (22) we define:

Uνρ = uνuρ − 1
2ηνρ. (24)



Recurrence Relations

▶ By inspection of (20), (21) and (22), we see that our
expressions for the electromagnetic and Riemann Curvature
tensors can be written in terms of a scalar field ϕ(n)(x):

F (n)
µν = 2u[µ∂ν]ϕ

(n). (25)

R(n)
µνρσ(x) = −2

[
Uρ[µ∂ν]∂σ − Uσ[µ∂ν]∂ρ

]
ϕ(n)(r). (26)



Stage 2: Integral Transforms and Integration

▶ Moving to stage 2 of the process, we now wish to convert our
integrals into the language of 2-spinors, and then integrate
out some of the degrees of freedom.

▶ Let’s start with the case of the scalar integral.
▶ Our momentum 4-vector is given by:

kµ = ωℓµ + ξqµ, (27)

where ℓ2 = q2 = 0; the parameters ω (on-shell) and ξ
(off-shell) have dimensions of energy; with a fixed 4-vector:

qµ = 1
2(0, 0, −1, 1) (28)



Momentum Spinorial Translation

▶ Spinorial translating our 4-momentum we get kAȦ:

kAȦ = ωλAλ̃Ȧ + ξqAȦ, (29)

▶ Where λA and λ̃Ȧ are now defined in terms of a complex
number z and its complex conjugate z̄ :

λA =
( 1√

z ,
√

z
)

, λ̃Ȧ =
( 1√

−z̃
, −

√
−z̃
)

. (30)

▶ In (2, 2)-signature, complex numbers z and their complex
conjugate z̄ decouple. E.g:

z̃ ̸= (z)∗ (31)



Delta Function Transformation
The delta function δ(u · k) spinorial translation depends on the
order in which we perform the integrals over dz and dz̃ . The delta
function first translates to:

δ(u · k) → δ
(
uAȦλAλ̃Ȧ

)
= 1

mδ(UAȦ(ωλAλ̃Ȧ))

= 2
ω

δ

(1 + zz̃√
−zz̃

)
(32)

If we are integrating over dz :

2
ω

δ

(1 + zz̃√
−zz̃

)
= 2

ωz̃ δ

(
z + 1

z̃

)
(33)

If we are integrating over dz̃ :

2
ω

δ

(1 + zz̃√
−zz̃

)
= 2

ωz δ

(
z̃ + 1

z

)
(34)



Delta Functions
An important implication of integrating over dz or dz̃ is the
replacement rules it generates for λA and λ̃Ȧ respectively:

Integration over dz:
λA = U Ȧ

A λ̃Ȧ (35)

Integration over dz̃:

λ̃Ȧ = −UA
Ȧ λA (36)

Where we define the mixed raised and lowered indexed spinorial
translation of the 4-velocity uµ:

U Ȧ
A =

(
0 −1
1 0

)
, (37)

UA
Ȧ =

(
0 1

−1 0

)
, (38)



Stage 2: Integral Transforms and Integration

We now have a change of variables from d4k to (ω, ξ, z , z̃):

d4k = dzdz̃dωdξ

4(2π)3 , (39)

We can then find:

ϕ(x) =
∫ dωdξdzdz̃

2(2π)4
ω

√
−z̃

z̃
√

z δ

(1 + zz̃√
−zz̃

)
×

e−iξq·x exp
[
− iω

2 λ̃Ȧλ̃ḂxAȦuA
Ḃ
]

J (k⃗). (40)

It is now useful to consider an example of this integral in practice.



Reissner-Nordstrom black hole

▶ The Reissner-Nordstrom black hole is simply a
Schwarzschild Black hole that has been allowed to be
electrically charged.

▶ In particular, its Weyl Double Copy is given by:

ΨABCD

= Ψ(1)
ABCD + Ψ(2)

ABCD

= 1
ϕ(1) Φ(1)

(ABΦ(1)
CD) + 1

ϕ(2) Φ(2)
(ABΦ(2)

CD) (41)

▶ We will be focusing on deriving ϕ(2), Φ(2)
AB and Ψ(2)

ABCD. From
the literature, we know that:

ϕ(2) ∝ 1
r2 (42)



Scalar Field Calculation

▶ This implies our source current is given by:

J (k⃗) = 2π2|k⃗|. (43)

▶ Applying this to our integral for ϕ(2) and integrating over ξ, ω
and z we find:

ϕ(2)(x) = 1√
32π

1
√q · x

∫
dz̃ 1

z̃3/2
1(

λ̃Ȧλ̃ḂxAȦuAḂ
)3/2 . (44)

▶ Where q · x is given by:

q · x = 1
2qAȦxAȦ (45)



Scalar Field Calculation

It is now convenient to define the rescaled spinor

χ̃Ȧ =
√

−z̃λ̃Ȧ =
(

1
z̃

)
, (46)

such that (44) can be written more compactly as

ϕ(2)(x) = 1√
32π

1
√q · x

∫
dz̃ 1(

χ̃Ȧχ̃ḂxAȦuAḂ
)3/2 . (47)

One complication of (47) is that its singularity structure involves
branch cuts rather than simple poles, and it is not then
immediately clear how to choose an appropriate contour.



Scalar Field Calculation

However, we can instead carry out the inverse Fourier transform
of our original expression for ϕ(2) in (20) to obtain:

ϕ(2)(x) =
∫ d4k

(2π)4
2π2δ(u · k)|k⃗|

k2 e−ik·x

= 1
(x2 − (u · x)2) = 1

r2 . (48)

Comparison with (47) then yields∫
dz̃ 1(

χ̃Ȧχ̃ḂxAȦuAḂ
)3/2 =

√
32π

√q · x
r2 . (49)

With denominator being give as:

χ̃Ȧχ̃ḂxAȦuA
Ḃ = z̃2(y + z) + 2x z̃ + z − y . (50)



Recurrance Relations in Practice

Recalling that ϕ(2) can be used to find the electromagnetic and
curvature fields respectively, we define a family of integrals:

Im,n = (−1)m+1
∫

dz̃ z̃n

[z̃2(y + z) + 2x z̃ + z − y ]3/2+m , (51)

where the scalar field in (49) is given by:

ϕ(2)(x) = 1√
32π

1
√q · x I0,0. (52)

with
I0,0 =

√
32π

√q · x
r2 = 4π

√y + z
x2 + y2 − z2 . (53)



Recurrance Relations in Practice

By differentiating (51) with respect to the spatial coordinates
(x , y , z), one can derive the recurrence relations

∂

∂x Im,n = −(3 + 2m)Im+1,n+1,(
∂

∂y + ∂

∂z

)
Im,n = −(3 + 2m)Im+1,n+2,(

∂

∂y − ∂

∂z

)
Im,n = (3 + 2m)Im+1,n, (54)

which we will use repeatedly in what follows.



Deriving Maxwell Fields

Spinorially translating the Fourier transform of the electromagnetic
field strength tensor in (21), then applying (9) to obtain the
Maxwell Spinor. Then, following the same process as done for the
scalar field previously we find:

Φ(2)
ȦḂ = − 3

4π

1
(x01̇)1/2

∫
dz̃

χ̃Ȧχ̃Ḃ
(χ̃Ȧχ̃ḂxAȦuAḂ)5/2

+ 1
4π

1
(x01̇)3/2

∫
dz̃

uȦ
AqAq̃Ḃ + uḂ

BqB q̃Ȧ
(χ̃Ȧχ̃ḂxAȦuAḂ)3/2

. (55)

Using our integral relations, we can write:

Φ(2)
ȦḂ = 1

4π

[
1

(q · x)3/2

(
0 0
0 −I0,0

)
− 6

√q · x

(
I1,0 I1,1
I1,1 I1,2

)]
,

(56)



Deriving Maxwell Fields

I1,0 = −32π(q · x)3/2

3r4 ,

I1,1 = 16πx(q · x)
3r4 ,

I1,2 = 16π

3 (y − z)
√q · x

r4 − 1
6

I00
q · x . (57)

Thus, the Maxwell spinor becomes

Φ(2)
AB = − 2

r4

(
−y − z x

x −y + z

)
, (58)

Φ(2)
AB = 2

u(Ȧ
BrḂ)B
r4 , (59)

where

rBḂ = (x − (u · x)u) · σBḂ =
(

−x z − y
−z − y x

)
. (60)



Weyl Spinor Calculation

The Weyl Spinor can be obtained from the Riemann Curvature
spinor via:

ΨABCD = 1
4R(AẊB

Ẋ
CẎ D)

Ẏ (61)

Then applying the same procedure as before to (22):

Ψ(2)
ȦḂĊḊ = 3κ

2

∫
dz̃
[

5χ̃Ȧχ̃Ḃχ̃Ċ χ̃Ḋ
(χ̃Ȧχ̃ḂxAȦuAḂ)7/2(q · x)1/2

+
2χ̃(Ȧχ̃Ḃ(u · q)Ċ q̃Ḋ)

(χ̃Ȧχ̃ḂxAȦuAḂ)5/2(q · x)3/2
+

(u · q)(Ȧq̃Ḃ(u · q)Ċ q̃Ḋ)

(χ̃Ȧχ̃ḂxAȦuAḂ)3/2(q · x)5/2

]
.

(62)



Weyl Spinor Calculation

Using our recurrence relations, the Weyl spinor becomes:

ΨȦḂĊḊ
(2) = 1

6r6

[
u(Ȧ

C uḊ)
B r ḂBr ĊC − u(Ċ

B uḊ)
A r ȦAr ḂB − u(Ḃ

C uḊ)
A r ȦAr ĊC

−
(
uĊ

D

(
uḂ

A r ȦA + uȦ
Br ḂB

)
+ uḂ

D

(
uĊ

A r ȦA + uȦ
C r ĊC

)
+uȦ

D

(
uĊ

B r ḂB + uḂ
C r ĊC

))
r ḊD

]
, (63)

The various terms combine in such a way as to yield the
combination

Ψ(2)
ȦḂĊḊ = −2

Φ(2)
(ȦḂΦ(2)

ĊḊ)

ϕ(2) , (64)

in terms of the electromagnetic spinor of (59). Thus, a Weyl
double copy does indeed hold for the integrated Weyl spinor,
even in the presence of a non-trivial source!



Sourced Weyl Double Copy from Tensor Methods

The Weyl Double for Einstein Maxwell Gravity can also be
expressed in the language of tensors:

W µνρσ =
m∑

n=1

2 + n
nϕ(n) Pµνρσ

τληωF (n),τλF (n),ηω. (65)

where Pµνρσ
τληω is some projector given by:

Pµνρσ
τληω = δµ

τ δν
λδρ

ηδσ
ω + 1

2gτηδ
[µ
λ gν][ρδσ]

ω + 1
6gτηgλωgµ[ρgσ]ν , (66)

Using this language, we can prove that the Double Copy holds for
arbitrary n:

ϕ(n) = 1
rn , (67)



Spinning Sources

▶ So far, we have proven that there exists a Weyl Double Copy
for the case of non-vacuum solutions in Einstein-Maxwell
gravity sourced by static spherically symmetric sources.

▶ It was also conjectured the Weyl Double Copy holds for
spinning sources.

▶ Performing the Janis Newman Shift on our results for the
Reissner-Nordstrom black hole, we obtain the Kerr-Newman
Black Hole (a rotating black hole sourced by a charged disk).



Overview

Charge Density pertaining to some static 
spherically symmetric solution in momentum space

Write down the Fourier Transform (Linearised)
Classical Fields

Translate to spinors, and integrate over ,  and 
 

Use recurrence relations to evaluate
the integrals

Spacetime Spinor Field



Conclusion and Further Work

▶ The Weyl Double Copy relates Petrov Vacuum Type D and
N solutions in General relativity to phenomena in
electromagnetism.

▶ We prove conjectures of a Weyl Double Copy for
Einstein-Maxwell gravity for scalar fields in arbitrary of r−n.

▶ Further work should probe whether we can extend our
discussion of the Kerr-Newman black hole to arbitrary r−n.

▶ It would be interesting to whether our results could have
applications to astrophysical settings.


