RAL MASTERCLASSES

Julie Kirk, Emmanuel Olaiya, Sophy Palmer

https://www.ppd.stfc.ac.uk/Pages/Particle-Physics-Masterclass.aspx

September 6th 2024

IOP

Harwell Campus & the STFC Rutherford Appleton Laboratory

Diamond light

Particle physics & visitors centre

ISIS neutron spallation & muon source

RAL PPD is: ATLAS, CMS, LHCb, HK, T2K, DUNE, LUX/LZ, MIGDAL, UK's WLCG T1 Computing centre

RAL MASTERCLASS

- Annual event over 4 days (Tues-Fri)
 - Targeting mainly A' level standard
- 1 day online, 3 days in person
- Around 1000 people for online masterclass
- 180 students per day for each of the 3 in person days
 - 180 student limit dictated by auditorium capacity
- RAL masterclasses are always oversubscribed for the in person days!

ONLINE MASTERCLASS

- During COVID we held the masterclass online
 - Due to the success we decided to continue providing an online masterclass
- 1 day during Masterclass week
 - Open to everyone!
- Just under 1000 students connect
- Find that students connect from all around the world
- For the workshop we use a computer farm at RAL to spin up hundreds of containers. We issue hundreds of usernames and passwords to schools before the online day.
- For students who join independently, we advise that they use mybinder or Google Colab to participate in the workshop

STFC Rutherford Appleton Laboratory Online Particle Physics Masterclass 2024

Programme: FINAL

Tuesday 12 March 2024 This event will take place via Zoom

Joining link: https://ukri.zoom.us/j/99449034715?pwd=OTEvNGRNMkRrYzJJbGF0QWhuR0dRQT09 Meeting ID: 994 4903 4715 Passcode: 615221

09:15 - 09:30	Arrive and Welcome
09:30 - 10:15	Talk: An Introduction to the Standard Model, Emmanuel Olaiya (Particle Physics Department)
10:15 - 11:45	 Virtual Tour The tour will consist of a short introduction followed by a virtual tour of one of our particle accelerators
11:45 - 12:45	Lunch
12:45 – 13:15	Talk: An introduction to the Large Hadron Collider Alison Elliot (Particle Physics Department)
13:15 - 14:45	 LHC Data Workshop The computer workshop will consist of a short introduction followed by an interactive session, with support for schools and students from the Particle Physics Department in breakout rooms, led by Sam Harper (Particle Physics Department) Link to join: <u>https://ukri.zoom.us/s/97718332312</u> Meeting ID: 977 1833 2312
14:45 - 15:00	Quiz, Questions and Wrap-up
15:00	END

If you have any queries please contact the Schools Team

IN PERSON DAYS

- We run 3 in person days, each day with 180 students
 - These days are oversubscribed and we could fill 9 in person days with the demand.
- We make a big effort to select schools from a range of backgrounds
- We provide food for the day for the students
- Schools have to arrange their own transport to and from RAL
- We have schools from as far as Newcastle attend

STFC Rutherford Appleton Laboratory Particle Physics Masterclasses 2024

<u>Programme</u>

Wednesday 13, Thursday 14 March 2024

09:30 - 10:00	Arrive, refreshments – R22 coffee lounge
10:00 - 10:05	Welcome, Lecture Theatre
10:05 - 10:20	Talk: A Very Brief Guide to Accelerators
10:20 - 10:55	Talk: Fundamentals of Particle Physics
11.05 - 11.25	Introduction to tour or computer workshop
11:25 - 12:20	Workshops and tours
12:20 - 13:10	Lunch - R112 Visitor Centre
13:10 - 13:55	Talk: The Large Hadron Collider
14.05 - 14.25	Introduction to tour or computer workshop
14:25 - 15:20	Workshops and tours (swapped groups)
15.25 - 15.35	Refreshments – R22 coffee lounge
15.35 - 15.55	Talk: Big Data and the LHC
16:00 - 16.30	Q&A, /quiz /panel discussion
16.30	END

If you have any queries please look at the website: <u>https://www.ppd.stfc.ac.uk/Pages/Particle-Physics-Masterclass.aspx</u> or contact the Schools Team on <u>visitral@stfc.ac.uk</u>

SLIDO

- SLIDO: An online inface to engage students with Q&As, live polls and quizzes
- Use Slido as a way of students asking questions during talks and for general questions during the day
 - Students use their phones for SLIDO
- Have RAL physicist monitoring SLIDO throughout the day to reply to questions
- Integrate polls and questions in talks via SLIDO
- SLIDO does a great job of increasing student engagement
 - Initially worried about the requirement students need a phone
 - Doesn't seem to be an issue!

LECTURES

- Four lectures
 - A Very Brief Guide to Accelerators
 - Fundamentals of Particle Physics
 - An Introduction to the Large Hadron Collider
 - Big Data and the LHC
- Lectures available on YouTube
- See
 <u>https://www.ppd.stfc.ac.uk/Pages/Particl</u>
 <u>e-Physics-Masterclass.aspx</u> for slides and
 videos

TOURS

- We are fortunate at RAL to be able to take the students on tours of the Diamond and ISIS experiments, where students learn more about accelerators and how scientists probe matter
- ISIS: Neutron and Muon beam production used to probe matter
- Diamond: UK's national synchrotron science facility
- We receive great feedback about the tours!

O

WORKSHOPS

- In our workshops students analyse real data (using LHC opendata) to find the Higgs boson
- The students use python and practice the physics they learned during the day

Hami

- Use jupyter notebooks, downloaded and run on computer sticks with linux OS
 - Jupyter notebooks are executable coding environments with a web browser interface
 - https://github.com/olaiya/zbo son-exercise

WORKSHOPS

<u> </u>						
G GitHub - olaiya/zboson-exercise × +						
→ ♂ ⋒ ₩ Q	Jaiya/zboson-exercise				E \$	♡ ± © ≦ ≡
	DoubleMuRun2011A.csv	Data sample now has 200K events	3 years ago	Jupyter Notebook 100.0%		
	Exercise.ipynb	Fixed partciles typo	last year			
	README.md	Text correction	6 months ago			
	requirements.txt	Added pyarrow to requirements file. Will be required by p	7 months ago			
	🗅 reset.sh	Added commands to reset notebook files to the HEAD of	last year			
	III README		:=			
	Particle physics data-a	nalysis with CMS open data	d 600 0			
	simple particle physics data-analysis. There a	cise where real data from CMS experiment at CERN is use are a few easy ways to get the exercise working:	d for a			
	monty.stfc.ac.uk Users If you are reading this after having logged on just click on Exercise.ipynb to start the comp	to <u>https://monty.stfc.ac.uk</u> (you need to have been given a uter exercise and read no further	an account)			
	1) Opening the exercise with Binder					
	With Binder it is easy to make Jupyter Notebo the badge Saunh Binder in the new browser building the interactive environ remutically started by clicking the "Exercise.jpynb" file ir	ook files interactive in the browser without any installing. t ab to create the Binder environment. When Binder has i tomatically show the contents of the repository. The exer the binder pricoment.	lust open inished cise can be			
	If the badge isn't working, you can set the Bir URL of this repository (<u>https://mybinder.org/v</u> field "GitHub repository name or URL". After t the environment.	nder environment manually. Go to <u>https://www.inder.org/ar</u> /2/gh/olaiya/zboson-exercise/master?filepath=Exercise.py that click the "launch" button and wait a moment for Bind	d paste the <u>no</u> , the er to create			
	Note that the Binder environment is just temp	porary and will be deleted after you choose to close the e	ercise.			
	2) Opening the exercise with Google	e Colab (need a Google account)				
	Using Google Colab you will need a Google a work is stored (on your Google Drive), so you access to more powerful GPU and CPU reso. analysing data! Click here: Ogan in Colab	ccount. However, there are some big benefits with this op I can return to where you left off at another time. You also urces. This would be a good place to set up your own proj	tion. Your have ects for			
	3) Downloading the material to be o	pened with Jupyter Notebook				
	Another way to open the exercise is to downle to open the exercise. This way requires that y computer.	oad the repository to your computer and then use Jupyte you have installed Jupyter Notebook (<u>https://jupyter.org/</u>)	r Notebook o your			
	The contents of the repository can be downlo page of the repository. Note that all files of the	baded by clicking the green <i>Clone or download</i> button on the repository have to be in the same directory in the comp	the main outer.			

Contents

 Want to enable students to be able to continue learning beyond the masterclass at RAL

• All you need is a browser and internet

Click to run on mybinder

Click to run on Google Colab

myBinder and Colab are online containers that run jupyter notebooks

USING MYBINDER FOR THE COMPUTER EXERCISE

- Students can run the exercises at home needing only a browser and an internet
- You are not limited to what is in the notebook
 - You can create your own cells and perform your own analyses
- Issue: you lose your work after each session
- Solution: Use Google colab
 - With a gmail accout you can save your work to google drive so your work persisits from session to session

WORKSHOPS

- The notebooks are a great way for students learn about coding, the Standard Model and physics analysis
- For those who are not new to python and the Standard Model the notebooks are fantastic
- However, feedback indicates that for the students who have just been introduced the python and the Standard Model find the notebooks too much to grasp within an hour!
- Students who have some previous exposure to python and the Standard Model seem to really like the notebooks
- Can we use something more straightforward for the workshops and have the notebooks as an at home/school longer project?

HARWELL OPEN WEEK WORKSHOPS

- During the last week of June the Harwell site which includes RAL was open to schools and the public
- For schools we had a masterclass like event
 - 400 students over 2 days
- We were able to test out another idea for the workshops.
- We used CMS's iSpy Web

O A https://ispy.web.cern.ch/1.5.0/

nd lightweigh imes +

iSpv a powerful and lightweight event display

iSpy's site has migrated to http://cms-outreach.github.io/ispy

Enjoy the example images below before you go, but the latest updated information is found via the link above.

INVARIANT MASS - CLICK ON THE OBJECTS TO SELECT

FILL IN THE INVARIANT MASS

1. CLICK TO SELECT ALL PARTICLEs and presss"M"

2. ENTER INVARIANT MASS INTO SPREADSHEET

Each student (pair) has a distinct dataset. They enter data into a Google Sheet to populate their histogram. There is also a Google sheet that is linked to all of the students sheets and shows a histogram for all their data. We show the students the effect of adding all their data at the end of the workshop

Independently students can make out the Z peak. When we add all their data you start to see hints of a Higgs peak

FUTURE WORKSHOPS

- Based on the feedback from Harwell Open Week, very few students struggled with iSpy
- We will likely use it for our next masterclass in March 2025!

aigt × +

O A https://ispy.web.cern.ch/1.5.0/

iSpy a powerful and lightweight event display

iSpy's site has migrated to http://cms-outreach.github.io/ispy

Enjoy the example images below before you go, but the latest updated information is found via the link above.

© QUIZ

- Spend the last 30 minutes of the day getting feedback from the students and then finish with a particle physics quiz.
 - All on slido
 - The feedback really helps us tailor the masterclass
- Winner of the quiz get a prize
 - Typically something bought from the CERN shop

IRIS

- Institute of Research In Schools (IRIS) is a charity that provides 11-18 years with the opportunity to participate in cutting-edge STEM research and collaborate with leading universities
- In collaboration with Oxford University (Alan Barr), we work with IRIS to provide school children the opportunity to analyse LHC data
 - Use ATLAS opendata
- Students analyse ATLAS data using jupyter notebooks
- RAL hosts the accounts for the students and provides the online computing for the students to use
- At the end of the project (typically spans a year) the students produce a poster on their findings and how they achieved them
- Over 300 students participated last year.
 - Roughly 50% were female!
 - We are still trying to understand how we achieved this number

Home/ Projects / Big Data: ATLAS

Empower your students with the skills to unravel the mysteries of the Universe and find evidence of the Higgs boson.

IRIS

- We now run a one day masterclass for a few schools that participate in the IRIS Big Data: ATLAS project a week or two after our main masterclass week
- Last year we won an award for the best project!
- This year during the run up to Harwell Open Week we had weekly meetings with a school participating in the IRIS project. We helped them with any questions regarding their work and any general physics questions

CONCLUSION

- The RAL particle physics masterclass is a popular annual event that is oversubscribed
 - Show we are doing something right
- Feedback from the masterclass is always positive
- Jupyter notebooks are a great way for students to learn about programming, analysis and particle physics
 - Would be nice to set up an infrastructure where school children can learn about the above like we do with the IRIS school children but requiring less teacher/university support
- There are lots of masterclasses in the UK. Can work together on a practical that the kids can use?