IPP_{meet} MINERVA:

a neutrino masterclass report

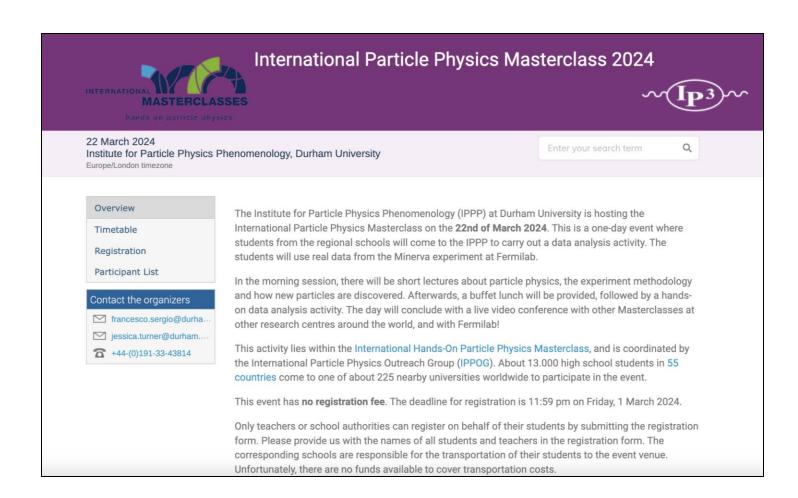
Francesco Sergio

Durham University

Institute for Particle
Physics Phenomenology

IPPP meets MINER vA

- Who
- What
- Why
- How
- Future


Last 22nd March 2024,

the IPPP hosted its **3**rd particle

physics masterclass.

The **first** one after the COVID19 interruption.

We were a new, inexperienced yet motivated team.

Jessica Turner

Assistant professor (my supervisor)

Hi! Since you are here, we should definitely re-establish the particle physics masterclass here at IPPP!

Outreach officer

Francesco Sergio

me)

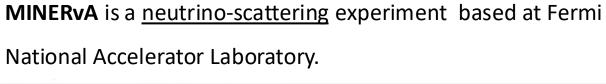
Don't you run them in Italy?

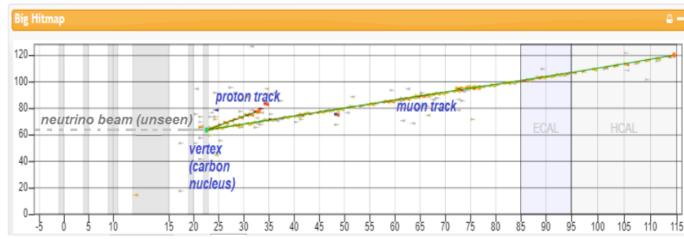
Nw, trust me. I know someone in the US who can help us

Spencer Pasero (Fermilab OPE manager) *joined the conversation*

A brief recap...

1. The IPPOG masterclasses

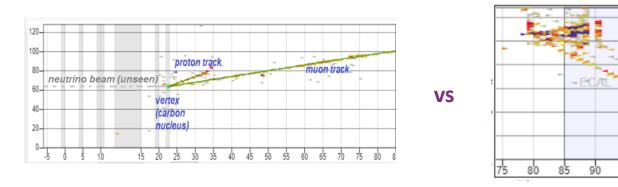



synopsis

One-day event where high school students analyze real data from real experiments thanks to intuitive software developed by those teams

2. MINERvA Masterclass [1] [2]

from QuarkNet website



2. MINERvA Masterclass

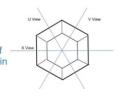
‡ Fermilab

The masterclass consists in analyzing MINERvA events, one by one: students should long tracks from the noisy ones.

Combining the $\bf p$ and $\bf \mu^-$ momenta, it is possible to reconstruct the incoming $\bf v$ beam, thus the Carbon nucleus size (via Heisenberg principle).

2. MINERVA Masterclass

Students operate the data analysis via <u>Arachne Simple</u>, the dedicated (online) software developed by Fermilab.


Welcome to Arachne Simple, the MINERvA web event display.

MINERVA

MINERvA is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. MINERvA studies neutrino interactions in support of neutrino oscillation experiments. Simple is a simplified version of the original Arachne used by members of the MINERvA collaboration. It is designed for use by teachers and student.

The Detector

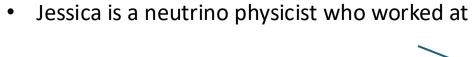
The diagrams at the right shows three directions the detector is viewed from with the z axis pointing out of the detector. The Hit Maps box in Arachne displays the X, U, and V views of the detector. The detector is made of overlapping layers of scintillator, a plastic which absorbs the energy of particles and reemits it in the form of a flash of light. The light deposited in the scintillator is carried through fiberoptic cables to photomultiplier tubes which detect the small flashes of light.

<u>Timetable</u>

Morning: Introductory talks

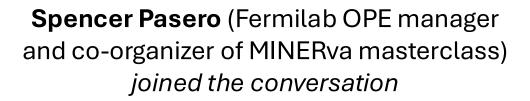
Afternoon: Hands-on experience

- a) Particle Physics Card Game [1], [2], [3]
- b) "What is the Universe made of?"
- c) "Why neutrinos matter"
- d) "Neutrino Detection"


100 students, **2** computer rooms,

6 teachers, **20** IPPP tutors

Farewell with certificates of participation



Fermilab for years

I was supposed to collaborate with

Quarknet, the Fermilab Ed. Group

planned the masterclass

NE disadvantaged educational

system

Low % of enrolled students

from local areas

Instead of knowledge, our aim was the **student's**

sense of belonging:

we wanted them to feel comfortable and confident

within the academic environment.

They won't remember what you said, but they

will remember how they felt.

planned the marterclass

- NE disadvantaged educational system
- Low % of enrolled students
 from local areas

Instead of knowledge, our aim was the **student's**

sense of belonging:

we wanted them to feel comfortable and confident

within the academic environment.

"Pressing" state schools to apply

60% of students were

from state schools

They won't remember what you said, but

they will remember how they felt.

3 scheduled breaks to let students

socialize with peers and tutors

planned the marterclass

About the registration process,

only teachers could apply.

To involve students **regardless** of their level of

interest or background in physics.

+

We attempted to achieve the most

diverse background possible:

Lower limit was

Year 9 (15yo)

Different types of

school

HOW did the marterclass 90?

Thigs that went

well

A lot of students were engaged

We achieved a good diversity in background:

~60% from state schools

~10 % from Year 10

~ 3 counties

No lost student

Both **lunch** and hands-on session were

lively, with many students engaging with

IPPP tutors

HOW did the marterclass 90?

challenges we faced

Introductory talks must be revised

Talks were too broad

Talks did not focus enough

on MINERvA

The hands-on activity itself suffers of some issues

Repetitive

d) Easy: students spent 45' to analyze all

the tuples (we planned 120')

future

strategies we will adopt

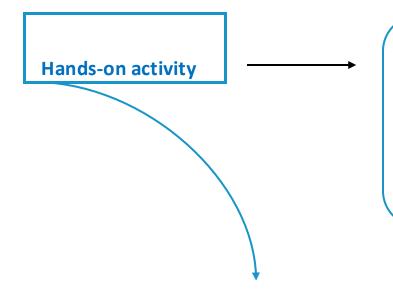
• Talks: less but more detailed concepts

• Breaks: to make them more engaging

Hands-on activity

Focus on the physics behind

MINERvA experiment:


- a) Not only neutrinos
- b) Heisenberg principle

c) New, dirtier data

d) Additional steps after the data analysis, which in turn becomes the starting point for a new challenge

future

strategies we will adopt

- c) New, dirtier data
- d) Additional steps after the data analysis, which in turn becomes the starting point for a new challenge

Further details coming soon ...

Thanks for your attention!

Francesco Sergio

Outreach officer at IPPP, Durham University

francesco.sergio@durham.ac.uk

francesco.sergio1996@gmail.com