

Why (light) new ν s?

New- ν Physics: From Colliders to Cosmology, Durham, UK, 9-11 April 202514 Feb. 2025

Thomas Schwetz Karlsruhe Institute of Technology Institute for Astroparticle Physics

Outline

- Introduction why new ν s?
- Phenomenological motivations for new ν s:
 - new ν s dark matter?
 - new ν s for short-baseline anomalies?
 - new ν s and missing neutrino mass in cosmology?

The neutrino challenge

- neutrino masses are tiny
- mixing of leptons is very different than for quarks

In the Standard model neutrinos are massless

- absence of right-handed neutrinos no Dirac mass for neutrinos
- Iepton-number is an accidental symmetry at the renormalizable level no Majorana mass can be generated

\rightarrow neutrino mass requires physics beyond the SM

given SM fields and gauge symmetry, lepton number cannot be violated at dim. 4 \rightarrow

Standard Model EFT

• Weinberg 1979: unique dim-5 operator consistent with gauge-symmetry of SM

 $\frac{Y_{ab}^2}{\Lambda} \overline{L_a^c} \tilde{\phi}^* \phi^{\dagger} L_b \rightarrow \frac{1}{2} \overline{\nu_{aL}^c} m_{ab} \nu_{bL}$ `scale of new physics`

 $m_{ab} \sim Y_{ab}^2 \frac{\langle \phi \rangle^2}{\Lambda}$

EWSB: Majorana neutrino mass

Standard Model EFT

$$\frac{Y_{ab}^2}{\Lambda} \overline{L_a^c} \tilde{\phi}^* \phi^{\dagger} L_b \rightarrow \frac{1}{2} \overline{\nu_{aL}^c} m_{ab} \nu_{bL}$$
scale of new physics

No indication of scale of new physics!

$$m_{\nu} \approx 0.06 \,\mathrm{eV} \,\left(\frac{Y}{1}\right)^2 \left(\frac{10^{15} \,\mathrm{C}}{\Lambda}\right)^2$$

• Weinberg 1979: unique dim-5 operator consistent with gauge-symmetry of SM

$$m_{ab} \sim Y_{ab}^2 \frac{\langle \phi \rangle^2}{\Lambda}$$

EWSB: Majorana neutrino mass

$\frac{\text{GeV}}{\Lambda} \right) \approx 0.06 \,\text{eV} \left(\frac{Y}{10^{-6}}\right)^2 \left(\frac{1 \,\text{TeV}}{\Lambda}\right)$

Beyond the Weinberg operator

What is the new physics responsible for neutrino mass?

- What is its energy scale?
- UV completion of the Weinberg operator?

 - many realisations at loop level (radiative neutrino mass models)

tree-level: seesaw type I (singlet fermion), II (triplet scalar), III (triplet fermion)

Beyond the Weinberg operator

What is the new physics responsible for neutrino mass?

- What is its energy scale?
- UV completion of the Weinberg operator?
 - tree-level: seesaw type I (singlet fermion), II (triplet scalar), III (triplet fermion) many realisations at loop level (radiative neutrino mass models)
- Most (but not all!) UV completions involve fermionic SM gauge singlets:

sterile neutrinos, right-handed neutrinos, heavy neutral leptons for this talk: **new-\nus** ("nu-nus")

We have no proof for the existence of new- ν s

without new fermionic degrees-of-freedom, e.g. Higgs-triplet (type-II seesaw), radiative models (Zee, Zee-Babu)

... but for the existence of new- ν physics!

well-known examples of neutrino mass generation

Where to look for new- ν s?

Where to look for new- ν s?

• unfortunately little guidance from theory

follow "Galileo's principle"?

https://www.azquotes.com/quote/905195

Heavy new-*v*s: ~10⁶–10¹⁶ GeV

motivation:

- high-scale seesaw
- high-scale leptogenesis
- GUTs

Heavy new-*v*s: ~10⁶–10¹⁶ GeV

motivation:

- high-scale seesaw
- high-scale leptogenesis
- GUTs

possible signatures:

- proton decay (DUNE, HyperK)
- stochastic gravitational waves from cosmic strings due to breaking of symmetry possibly related to Majorana mass (e.g., B-L, GUT)

Buchmüller, Domcke, Kamada, Schmitz '13; Dror, Hiramatsu, Kohri, Murayama, White '19; King, Pascoli, Turner, Zhou '20;...

"weak scale" new- ν s: 0.1 GeV–10 TeV

motivation:

- Iow-scale seesaw (type-II, inverse seesaw, ν MSM, ...)
- TeV-scale left-right symmetric models
- Ioop-induced neutrino masses
- Inks to dark matter candidates
- ARS leptogenesis via HNL oscillations

rich "particle physics signatures":

- HNLs, W_R, extended Higgs sector,... (collider, beam-dumps),
- charged lepton-flavour violation

motivation:

- 2-parameter model for DM: θ_s, m_s
- very predictive in its minimal version

review: Boyarsky et al., arXiv:1807.07938

motivation:

- 2-parameter model for DM: θ_s, m_s
- very predictive in its minimal version

review: Boyarsky et al., arXiv:1807.07938

DM production rate: $\Gamma \sim G_F^2 T^5 \sin^2 2\theta_m$

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + [\Delta(p)\cos(2\theta) - V_D - V_T]^2}$$

 $\Delta = \Delta m^2 / (2p_{\nu}), V_T \simeq G_F^2 T^4 p_{\nu}, V_D \simeq G_F T^3 L_{\nu}$

motivation:

- 2-parameter model for DM: θ_s, m_s
- very predictive in its minimal version

review: Boyarsky et al., arXiv:1807.07938

DM production rate: $\Gamma \sim G_F^2 T^5 \sin^2 2\theta_m$

$$\sin^2(2\theta_m) = \frac{\Delta^2(p)\sin^2(2\theta)}{\Delta^2(p)\sin^2(2\theta) + [\Delta(p)\cos(2\theta) - V_D - V_T]^2}$$

 $\Delta = \Delta m^2 / (2p_\nu), V_T \simeq G_F^2 T^4 p_\nu, V_D \simeq G_F T^3 L_\nu$

loop-induced decay (X-ray signature): $\Gamma \sim G_F^2 \theta^2 m_s^5$

Th. Schwetz - Why new ν s, 9 April 2025

minimal scenario ruled out

"oscillation scale": < 10 eV

motivation:

- phenomenological (effects in oscillations, short-baselines)
- not well motivated from "top-down" perspective
- (very) low-scale seesaw models exist

Short-baseline anomalies

Anomaly	Channel	
Reactor rate and shape	$\nu_e \rightarrow \nu_e$	fadi systei
Gallium / BEST	$ u_e ightarrow u_e$	very
LSND	$ u_{\mu} ightarrow u_{e}$	siq ~2
MiniBooNE	$ u_{\mu} ightarrow u_{e}$	very relies on

Status

Explanation?

ing away ($< 2\sigma$) matics dominated

significant (~5o)

gnificant (3.80) 25 yr anomaly

significant (4.80) background estimate

Short-baseline anomalies

Anomaly	Channel	
Reactor rate and shape	$\nu_e ightarrow \nu_e$	fadi syster
Gallium / BEST	$\nu_e ightarrow \nu_e$	very
LSND	$ u_{\mu} ightarrow u_{e}$	siq ~'
MiniBooNE	$ u_{\mu} \rightarrow \nu_{e} $	very relies on

Status

Explanation?

ing away ($< 2\sigma$) matics dominated

systematics/nuclear physics

significant (~5o)

gnificant (3.80) 25 yr anomaly

significant (4.80) background estimate

The gallium anomaly and BEST results

	$\chi^2_{\rm null}/{ m dof}$	<i>p</i> -value
CS1, BEST	32.1/2	$1.1 \times 10^{-7} (5.3\sigma)$
CS1, all	36.3/6	$2.4 \times 10^{-6} (4.7\sigma)$
CS2, BEST	34.7/2	$2.9 \times 10^{-8} (5.5\sigma)$
CS2, all	38.4/6	$9.4 \times 10^{-7} (4.9\sigma)$

Farzan, TS, 2306.09422 cross sections CS1, CS2 from Haxton et al., 2303.13623

 Measurements of gallium solar neutrino experiments GALLEX and SAGE with radioactive ⁵¹Cr or ³⁷Ar sources lead to rates lower than expected

> BEST coll., Barinov et al., Phys. Rev. Lett. 128 (2022), no. 23 232501; Phys. Rev. C 105 (2022), no. 6 065502

see also Berryman, Coloma, Huber, TS, Zhou, 2111.12530; Goldhagen, Maltoni, Reichard, TS, 2109.14898;

severe tension of $4 - 5\sigma$

Short-baseline anomalies

Anomaly	Channel	Status	Explanation?
Reactor rate and shape	$\nu_e \rightarrow \nu_e$	fading away (< 2 0) systematics dominated	systematics/nuclear physics
Gallium / BEST	$\nu_e ightarrow \nu_e$	very significant (~5ơ)	sterile oscillations in strong tensi w reactor, solar, cosmology difficult to explain exotic decoherence? [Farzan, TS,
LSND	$ u_{\mu} \rightarrow \nu_{e} $	significant (<mark>3.8</mark> 0) ~25 yr anomaly	
MiniBooNE	$ u_{\mu} \rightarrow \nu_{e} $	very significant (<mark>4.8</mark> 0) relies on background estimate	

Strong tension btw appearance and disappearance

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

sterile oscillation explanation of LSND/MiniB robustly disfavoured

non-observation of oscillations in ν_{μ} disappearance (CDHS, MiniB, MINOS+, SK, IceCube)

MiniBooNE and a decaying sterile neutrino

Palomares, Pascoli, TS, hep-ph/0505216; Gninenko, 0902.3802, 1009.5536; Bertuzzo, Jana, Machado, Zukanovich, 1807.09877; Ballett, Pascoli, Ross-Lonergan, 1808.2915; Arguelles, Hostert, Tsai, 1812.08768; Fischer, Hernandez, TS, 1909.09561; Dentler, Esteban, Kopp, Machado, 1911.01427; deGouvea, Peres, Prakash, Stenico, 1911.01447; Brdar, Fischer, Smirnov, 2007.14411; Abdallah, Gandhi, Roy, 2010.06159; Abdullahi, Hostert, Pascoli, 2007.11813; Abdullahi et al., 2308.02543; Hoster, Kelly, Zhou, 2406.04401; ...

- sterile neutrino N with $m_N \sim \text{keV}$ to ~500 MeV
- produce N either by mixing or by up-scattering
- decay:
 - $N \rightarrow \phi \, \nu_{
 ho}$ with standard neutrino interaction in detector
 - electromagn. decay inside MB detector $N \rightarrow \nu \gamma / \nu e^{\pm} / \nu \pi^0 / \dots$ (no LSND)
- exciting new physics / rich phenomenology / predict signatures in existing (near detectors) and/or upcoming experiments (e.g., Fermilab SBN, DUNE, HK, IceC)

MiniBooNE and a decaying sterile neutrino

Palomares, Pascoli, TS, hep-ph/0505216; Gninenko, 0902.3802, 1009.5536; Bertuzzo, Jana, Machado, Zukanovich, 1807.09877; Ballett, Pascoli, Ross-Lonergan, 1808.2915; Arguelles, Hostert, Tsai, 1812.08768; Fischer, Hernandez, TS, 1909.09561; Dentler, Esteban, Kopp, Machado, 1911.01427; deGouvea, Peres, Prakash, Stenico, 1911.01447; Brdar, Fischer, Smirnov, 2007.14411; Abdallah, Gandhi, Roy, 2010.06159; Abdullahi, Hostert, Pascoli, 2007.11813; Abdullahi et al., 2308.02543; Hoster, Kelly, Zhou, 2406.04401;

 $\Lambda/\text{with } m \sim k \alpha / t \alpha - 500 \Lambda/\alpha /$ sterile neutrino

- produce *N* eithe
- decay:
 - $N \rightarrow \phi \nu_e$ with
 - electromagn. d

radiation exciting new p

Short-baseline anomalies — summary

Anomaly	Channel	Status	Explanation?
Reactor rate and shape	$\nu_e \rightarrow \nu_e$	fading away (< 2 0) systematics dominated	systematics/nuclear physics
Gallium / BEST	$ u_e ightarrow u_e$	very significant (~5ơ)	sterile oscillations in strong tens w reactor, solar, cosmology difficult to explain exotic decoherence (?)
LSND	$ u_{\mu} ightarrow u_{e}$	significant (<mark>3.8</mark> 0) ~25 yr anomaly	sterile oscillations in strong tensi w disappearance data, cosmolo
MiniBooNE	$ u_{\mu} \rightarrow \nu_{e} $	very significant (<mark>4.8</mark> 0) relies on background estimate	difficult to explain HNL decay

The cosmo anomaly:

Why is neutrino mass not seen in cosmology?

Neutrino mass from cosmology

$$\Sigma \equiv \sum_{i=1}^{3} m_i = \begin{cases} m_0 + \sqrt{\Delta m_{21}^2 + m_0^2} + \sqrt{\Delta m_{31}^2 + m_0^2} \\ m_0 + \sqrt{|\Delta m_{32}^2| + m_0^2} + \sqrt{|\Delta m_{32}^2| - \Delta m_{21}^2 + m_0^2} \end{cases}$$

• minimal values predicted from oscillation data for $m_0 = 0$:

$$\Sigma_{\min} = \begin{cases} 98.6 \pm 0.85 \,\mathrm{meV} & (\mathrm{IO}) \\ 58.5 \pm 0.48 \,\mathrm{meV} & (\mathrm{NO}) \end{cases}$$

• Upper bounds from current data:

- $\Sigma m_{\nu} < 0.12 \,\mathrm{eV} \,(95 \,\% \,\mathrm{CL})$ Planck CMB+BAO 2018
- $\Sigma m_{\nu} < 0.064 \,\mathrm{eV} \,(95\,\%\,\mathrm{CL})$ DESI 2025 + CMB

Tension between cosmology and oscillation results?

updated from Gariazzo, Mena, TS, 2302.14159

Hint for the existence of new- ν s?

Hint for the existence of new- ν s?

Hint for the existence of new- ν s?

Cosmology bounds can be relaxed in non-standard scenarios

- dynamical dark energy Green, Meyers, 2407.07878;...; DESI DR2 2503.14743: $\sum m_{\nu} \lesssim 0.16 \,\mathrm{eV}$
- neutrino decay into dark radiation Chacko et al. 1909.05275; 2002.08401; Escudero et al., 2007.04994; Barenboim et al.,2011.01502; Chacko et al. 2112.13862: $\sum m_{\nu} < 0.42 \,\mathrm{eV}$
- time dependent neutrino mass Lorenz et al. 1811.01991; 2102.13618; Esteban, Salvado, 2101.05804; Sen, Smirnov, 2407.02462, 2306.15718;
- modified momentum distribution Cuoco et al., astro-ph/0502465; Barenboim et al., 1901.04352; Alvey, Sabti, Escudero, 2111.14870
- reduced neutrino density + dark radiation Beacom, Bell, Dodelson, 04; Farzan, Hannestad, 1510.02201; Renk, Stöcker et al., 2009.03286; Escudero, TS, Terol-Calvo, 2211.01729

Cosmology bounds can be relaxed in non-standard scenarios

- dynamical dark energy Green, Meyers, 2407.07878;...; DESI DR2 2503.14743: $\sum m_{\nu} \lesssim 0.16 \,\mathrm{eV}$
- neutrino decay into dark radiation Chacko et al. 1909.05275; 2002.08401; Escudero et al., 2007.04994; Barenboim et al.,2011.01502; Chacko et al. 2112.13862: $\sum m_{\nu} < 0.42 \, \text{eV}$
- time dependent neutrino mass Lorenz et al. 1811.01991; 2102.13618; Esteban, Salvado, 2101.05804; Sen, Smirnov, 2407.02462, 2306.15718;
- modified momentum distribution Cuoco et al., astro-ph/0502465; Barenboim et al., 1901.04352; Alvey, Sabti, Escudero, 2111.14870
- reduced neutrino density + dark radiation Beacom, Bell, Dodelson, 04; Farzan, Hannestad, 1510.02201; Renk, Stöcker et al., 2009.03286; Escudero, TS, Terol-Calvo, 2211.01729

- introduce a set of N_{γ} massless new- ν s
- a mediator X coupled to neutrinos
- ~10 keV new- ν dark matter freeze-out in the dark sector

Farzan, Hannestad, 1510.02201; Escudero, TS, Terol-Calvo, 2211.01729; Benso, TS, Vatsyayan, 2410.23926

• convert active neutrinos into massless new- ν s after BBN but before CMB decoupling

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

Yukawa sector

$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\Phi} \chi_L \Phi + \text{h.c.}$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

Scalar potential

 $-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\Phi} \chi_L \Phi + \text{h.c.}$ $V = \mu_H^2 H^{\dagger} H + \lambda_H \left(H^{\dagger} H \right)^2 + \mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_{H\Phi} |\Phi|^2 H^{\dagger} H$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

 $-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\Phi} \chi_L \Phi + \text{h.c.}$ $V = \mu_H^2 H^{\dagger} H + \lambda_H \left(H^{\dagger} H \right)^2 + \mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_{H\Phi} |\Phi|^2 H^{\dagger} H$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\nu}$$

$$\mathcal{M}_n = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & M_R & \Lambda \\ 0 & \Lambda^T & 0 \end{pmatrix}$$

$$m_D = \frac{v_{\rm EW}}{\sqrt{2}} Y_\nu, \quad \Lambda = \frac{v_{\Phi}}{\sqrt{2}} Y_\nu$$

 $\Lambda \ll m_D \ll M_R$

 $\int_{\Phi} \chi_L \Phi + \text{h.c.}$

 $m_{\rm heavy} \approx M_R$ $m_{\rm active} \approx m_D^2 / M_R$ $m_{\chi} = 0, \quad \theta_{\nu\chi} \approx \Lambda/m_D$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\nu}$$
$$\mathscr{L}_{\text{int}} = g_X Z'_{\mu} \overline{\chi} \gamma^{\mu} \chi \qquad g_X = -$$

couplings to neutrinos induced by mixing: $Z' \leftrightarrow \nu \nu l \nu \chi l \chi \chi$

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

$$-\mathcal{L} = \overline{N_R} Y_{\nu} \ell_L \widetilde{H}^{\dagger} + \frac{1}{2} \overline{N_R} M_R N_R^c + \overline{N_R} Y_{\nu}$$

 $g_X = \frac{m_{Z'}}{v_{\Phi}}$ $\mathscr{L}_{int} = g_X \mathcal{L}'_{\mu} \overline{\chi} \gamma^{\mu} \chi$

indep. params for pheno:

 $\int_{\Phi} \chi_L \Phi + \text{h.c.}$

$m_{\nu}, M_R, \theta_{\nu\chi}$ $v_{\Phi}, m_{Z'}$

Extending the model to include keV sterile neutrino dark matter

- 3 heavy new- ν s (seesaw)
- new abelian gauge symmetry $U(1)_X$
- a scalar Φ charged under $U(1)_X$
- a set of N_{γ} massless new- ν s charged under $U(1)_X$

• add one more heavy new-v neutrino N' \Rightarrow one of the χ will also pick up a seesaw induced mass $\rightarrow \psi$

Benso, TS, Vatsyayan, 2410.23926

Extending the model to include keV sterile neutrino dark matter

neutral fermion mass matrix in the basis $(\chi^c_L, \nu^c_L, \psi^c_L, N', N)$

assume hierarchies:

$$\begin{split} M \gg M' \gg m_D \gg \kappa' \gg \Lambda \gg m'_D, \kappa, \Lambda' \, . \\ M' m_D^2 \ll M {\kappa'}^2 \end{split}$$

$$m_{\chi} = 0$$

$$m_{\nu} \approx m_D M^{-1} m_D^T$$

$$m_{\psi} \approx \kappa' M'^{-1} \kappa'^T .$$

$$m_{N'} \approx M'$$

$$m_N \approx M .$$

Extending the model to include keV sterile neutrino dark matter

neutral fermion mass matrix in the basis $(\chi_L^c, \nu_L^c, \psi_L^c, N', N)$

keV DM candidate

assume hierarchies:

$$\begin{split} M \gg M' \gg m_D \gg \kappa' \gg \Lambda \gg m'_D, \kappa, \Lambda' \, . \\ M' m_D^2 \ll M {\kappa'}^2 \end{split}$$

$$m_{\chi} = 0$$

$$m_{\nu} \approx m_D M^{-1} m_D^T$$

$$m_{\psi} \approx \kappa' M'^{-1} \kappa'^T.$$

$$m_{N'} \approx M'$$

$$m_N \approx M.$$

mixing and interactions:

$$\theta_{\nu\psi} = \frac{m'_D}{\kappa'}, \quad \theta_{\chi\psi} = 0$$

$$\mathscr{L}_{\rm int} = g_X Z'_\mu \overline{\psi} \gamma'$$

DM production via dark freeze-out similar to Berlin, Blinov, 1706.07046, 1807.04282

• assume $m_{\psi} < m_{Z'}$

• ψ thermalizes with the dark fluid via $\psi\psi\leftrightarrow Z'$

• DM freeze-out for $T_{DS} \lesssim m_{\psi}$

$$\Omega_{\psi} h^2 \simeq x_f \frac{10^{-10} \,\mathrm{GeV}^{-2}}{\langle \sigma v \rangle_{\psi\psi \to \chi\chi}}$$

$$\langle \sigma v \rangle_{\psi\psi \to \chi\chi} = N_{\chi} \frac{g^4}{4\pi} \frac{m_{\psi}^2}{(m_{Z'}^2 - 4m_{\psi}^2)^2}$$

Right DM abundance in the relevant parameter region

• DM mass $15 \,\mathrm{keV} \lesssim m_{\psi} \lesssim 100 \,\mathrm{keV}$

• DM stability and X-ray constraints: $\psi \rightarrow \nu \chi \chi, \psi \rightarrow \nu \gamma$ suppressed by $\theta_{\nu\psi}^2$ require $\theta_{\nu\psi} \lesssim 10^{-8}$

Signatures of the model

massless dofs: $4N_{\gamma} + 2$

Benso, TS, Vatsyayan, 2410.23926

Signatures of the model

warm DM candidate:

potentially observable cut-off in matter power spectrum

determined by kinetic decoupling of DM from dark radiation

Berlin, Blinov, 1807.04282; Bringmann, Ihle, Kersten, Walia, 1603.04884

Benso, TS, Vatsyayan, 2410.23926

Summary — why new ν s?

- theory suggests (but does not proof) the existence of new- ν s,
- but theory gives us very little guidance on where they are
- Iook for them everywhere we can

Summary — why new ν s?

- theory suggests (but does not proof) the existence of new- ν s,
- but theory gives us very little guidance on where they are
- Iook for them everywhere we can

"Science is a bit like the joke about the drunk who is looking under a lamppost for a key that he has lost at the other side of the street, because that's where the light is. It has no other choice." Noam Chomsky

backup

Hint for dynamical dark energy?

 $cosm.const.: w_0 = -1, w_a = 0$

DE equation of state: $p = w\rho$

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

 $2.8\sigma - 4.2\sigma$ indication for deviation from cosmolog. const.

DESI DR2 2025 [2503.14738]

Th. Schwetz - DPG, Göttingen 3. April 2025

Dynamical dark energy and neutrino mass limit

	$\sum m_{\nu} [eV]$
$w_0 w_a { m CDM} {+} {\sum m_ u}$	
DESI BAO+CMB	< 0.163
DESI BAO+CMB+Pantheon+	< 0.117
DESI BAO+CMB+Union3	< 0.139
DESI BAO+CMB+DESY5	< 0.129

• thermalization of the dark sector:

 $\Rightarrow \langle \Gamma(\nu\nu \to Z') \rangle \gtrsim H(T = m_{Z'}/3)$

• thermalization of the dark sector:

$$\Rightarrow \langle \Gamma(\nu\nu \to Z') \rangle \gtrsim H(T = m_{Z'}/3)$$

• avoid thermalization of the dark sector before BBN: $\langle \Gamma(\nu\nu \to Z') \rangle < H(T = 0.7 \,\text{MeV})$

• thermalization of the dark sector:

$$\Rightarrow \langle \Gamma(\nu\nu \to Z') \rangle \gtrsim H(T = m_{Z'}/3)$$

- avoid thermalization of the dark sector before BBN: $\langle \Gamma(\nu\nu \to Z') \rangle < H(T = 0.7 \,\text{MeV})$
- free-streaming of neutrinos & dark radiation before/around recombination $\langle \Gamma \rangle < H$ for $z < 10^5$ Taule, Escudero, Garny, 2207.04062

Neutrino mixing with massless states $\theta_{\nu\gamma}$

- avoid thermalization of χ prior neutrino decoupling due to oscillations
- take into account effective potential due to self-interactions

Neutrino mixing with massless states $\theta_{ u\gamma}$

 $10^{-4} \lesssim \theta_{\nu\chi} \lesssim 10^{-1}$ T. Ota, 2411.16356

upper range potentially testable in oscillation experiments

Constraints on heavy RH neutrinos

 $M_R \lesssim 10^{10} - 10^{14} \,\mathrm{GeV}$

- perturbativity of Yukawa $Y_{\Phi} \overline{N}_R \chi_L \Phi$
- loop-induced Higgs portal $\lambda_{\Phi H} |\Phi|^2 H^{\dagger} H$ remains small to avoid thermalization of Φ prior BBN

Constraints on heavy RH neutrinos

 $M_R \lesssim 10^{10} - 10^{14} \,\mathrm{GeV}$

- perturbativity of Yukawa $Y_{\Phi} \overline{N}_R \chi_I \Phi$
- loop-induced Higgs portal $\lambda_{\Phi H} | \Phi |^2 H^{\dagger} H$ remains small to avoid thermalization of Φ prior BBN

Comment on leptogenesis:

- standard thermal LG works if $N \rightarrow HL$ dominates over $N \to \phi \chi$
- otherwise χ would thermalize and conflict with $N_{\rm eff}$ \Rightarrow require $T_{RH} < M_R$ (allows still for $T_{RH} \gg T_{EW}$)

Signatures in a super nova

SN cooling arguments for SN1987A exclude

weaker than BBN constraint $\lambda_{Z'}^{\nu\nu} \lesssim 10^{-7} (\text{keV}/m_{Z'})$

• Future galactic SN at 10 kpc: neutrino signal in HyperK from $Z' \rightarrow \nu \nu$: sensitivity down to

 $\lambda_{Z'}^{\nu\nu} \sim 10^{-9} (\text{keV}/m_{Z'})$ Akita, Im, Masud, 2206.06852

