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Motivation: new physics
No new physics signals at particle physics experiments  
(modulo several inconclusive anomalies), except for neutrino masses


New Physics


• very weakly coupled 
new degrees of freedom (dofs) below the electroweak (EW) scale   
very likely singlets of the SM gauge group


• present at scales   
SMEFT is appropriate description


• both 
“new dofs + SM” EFT (respecting SM gauge symmetry) required


What are these new dofs:

scalars, fermions, vectors?

v

Λ ≫ v
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Motivation: neutrino masses
In the SM neutrinos are massless

Neutrino oscillations show that (at least two) neutrinos have mass


Minimal renormalisable Lagrangian to accomodate neutrino masses:


 


 is right-handed (RH) neutrino 


  is Dirac neutrino, lepton number (LN) is conserved





(        flavour problem)


Is LN a fundamental symmetry?

ℒSM+N = ℒSM + i NR ∂ NR − [LH̃YNNR + h.c.]
NR

ν = (νL, NR)T

YN ∼ 10−13 ⇒ mν = YNv/ 2 ∼ 0.01 eV

Yt ∼ 1 Ye ∼ 10−6 ⇒
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Motivation: neutrino masses
If LN is violated, then





  and    are Majorana neutrinos


 is heavy neutral lepton (HNL)


Type I seesaw mechanism








For , huge range of values for 


Active-heavy neutrino mixing





−ℒmass = LH̃YNNR +
1
2

Nc
RMNR + h.c. →

1
2 (νL Nc

R) (
0 mD

mT
D M ) (νc

L
NR) + h.c.

ν = (νL, νc
L)T N = (Nc

R, NR)T

N

mD = YNv/ 2 ≪ M ⇒ mν = −mD M−1 mT
D

YN ∼ 1 , M ∼ 1015 GeV ⇒ mν ∼ 0.01 eV

YN ≪ 1 M

V2
αN ∼ ( mD

M )
2

∼
mν

M
V2

αN ∼ 10−11 ÷ 10−14 for M ∼ 1 ÷ 103 GeV
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Motivation: neutrino masses
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Of course, at non-renormalisable level, the minimal way to generate  
Majorana neutrino masses is via Weinberg dimension-5 operator


 


SMEFT accommodates lepton-number-violating neutrino masses


In what follows, we will assume

lepton number conservation (LNC)


or


lepton number violation (LNV) by 


new heavy physics exists at scale 


Under these assumptions,  should be present in the EFT 

 NSMEFT (also called 𝝂SMEFT, SMEFT, SMNEFT)

𝒪LH = (LH̃) (H̃TLc) + h.c.

M ≲ v
Λ ≫ v

NR
⇒ NR



NSMEFT: dim-5 operators
The effective Lagrangian


 


 are effective operators invariant under 


Operators of  (all violate LN)


             Weinberg, PRL 43 (1979) 1566


        Aguila, Bar-Shalom, Soni, Wudka, 0806.0876


         Aparici, Kim, Santamaria, Wudka, 0904.3244


 vanishes identically for one generation of 

ℒ = ℒSM+N +
∞

∑
d=5

1
Λd−4

nd

∑
i

c(d)
i 𝒪(d)

i

𝒪(d)
i SU(3)c × SU(2)L × U(1)Y

d = 5
𝒪LH = (LH̃) (H̃TLc)
𝒪NNH = (Nc

RNR) (H†H)
𝒪NNB = (Nc

R σμνNR) Bμν

𝒪NNB NR
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NSMEFT: dim-6 operators
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Aguila, Bar-Shalom, Soni, Wudka, 0806.0876

Liao and Ma, 1612.04527

Higgs-N operators   # (+h.c.) = 5 (9)

4-fermions   11 (16)  2 (4)  

operators including h.c.
nf = 1 [3] : 29 [1614]



Disclaimer
Many works on theoretical aspects and phenomenology of the NSMEFT, 
especially, over last few years (impossible to cover in 20 mins…)


I will present a selection of results based mostly on my works


Apologies for missing your works
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4-fermions and (almost) stable N
Dirac    or  Majorana    with   GeVν = (νL, NR)T N = (Nc

R, NR)T mN ≲ 0.1
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Alcaide, Banerjee, Chala, AT, 1905.11375
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New top decay

Alcaide, Banerjee, Chala, AT, 1905.11375
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4-fermions and (almost) stable N
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ATLAS, 1706.04786


 (monojet)

CMS, 1712.02345







PDG, RPP 2018




Alcaide, Banerjee, Chala, AT,  
1905.11375

pp → ℓ + Emiss
T

pp → j + Emiss
T

Γπ→e+inv = (310 ± 1) × 10−23 GeV

Γτ→e+inv = (4.03 ± 0.02) × 10−13 GeV

t → bℓ + inv

Alcaide, Banerjee, Chala, AT,  
1905.11375

Figure from J. Alcaide’s PhD thesis
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ATLAS, 1706.04786


 (monojet)

CMS, 1712.02345







PDG, RPP 2018


 @ HL-LHC

Alcaide, Banerjee, Chala, AT,  
1905.11375

pp → ℓ + Emiss
T

pp → j + Emiss
T

Γπ→e+inv = (310 ± 1) × 10−23 GeV

Γτ→e+inv = (4.03 ± 0.02) × 10−13 GeV

t → bℓ + inv



Recast of  existing limits
Fernandez-Martinez et al., 2304.06772 [https://github.com/mhostert/Heavy-Neutrino-Limits]
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(monojet from the previous slide)

(  
from the  
previous slide)

ℓ + Emiss
T

https://github.com/mhostert/Heavy-Neutrino-Limits


Higgs-N operators
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Table 1: Relevant CP-even bosonic operators. The h.c. is implied when needed. For
example, O1

DN
= N@

2/@N + h.c. So all Wilson coe�cients are hermitian. The CP-odd
operators include iBµ⌫(N�

µ
@
⌫
N), iONB, iONW , iO1,2,3,4

LN
, iOLNH , iOHN and iOHNe [?].

1H ONB = L�
µ⌫
NH̃Bµ⌫ ONW = L�

µ⌫
N�IH̃W

I
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2H OHN = N�
µ
N(H†

i
 !
DµH) OHNe = N�

µ
e(H̃†

iDµH)

3H OLNH = LH̃N(H†
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and 2. The ↵i represent Wilson coe�cients. As we enforce LN conservation, there are no
dimension-five operators.

In this work we are only interested in the CP-even sector of the theory. Therefore, in
good approximation we can assume that Yu = diag(yu, yc, yt), while Yd = diag(yd, ys, yb)
and Ye = diag(ye, yµ, y⌧ ) without loss of generality.

In good approximation we can also assume that there is no huge fine-tuning between
the operators entering into the expression for the neutrino mass, m⌫ ⇠ YNv�↵LNHv

3
/⇤2,

so in particular YN can be neglected 2. This also implies that lepton flavour is conserved
in L4. For simplicity we focus on the regime in which lepton flavour is also conserved in
the N sector of L6. As a consequence, the three lepton families factorise (in particular
they evolve independently under the RGEs). We can therefore ignore flavour indices for

2Even if, as we show below, ↵LNH is generated radiatively and therefore YN ⇠ g2v2/(16⇡2⇤2) to keep
m⌫ small, YN is of order . 10�4 for ⇤ = 1 TeV, and hence much smaller than even the muon Yukawa.

/L ONNNN = (N cN)(N cN)

/L & /B
OQQdN = (Qc✏Q)(dcN)

OuddN = (ucd)(dcN)

4

𝒪NNH = (NcN) (H†H)
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Higgs-N operators

   (for simplicity)

LEP, 90’s; PDG, RPP 2018
ℬ(Z → ννγ(γ)) ≲ 3 × 10−6 ⇒ set αNZ = αHN = 0
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and 2. The ↵i represent Wilson coe�cients. As we enforce LN conservation, there are no
dimension-five operators.

In this work we are only interested in the CP-even sector of the theory. Therefore, in
good approximation we can assume that Yu = diag(yu, yc, yt), while Yd = diag(yd, ys, yb)
and Ye = diag(ye, yµ, y⌧ ) without loss of generality.

In good approximation we can also assume that there is no huge fine-tuning between
the operators entering into the expression for the neutrino mass, m⌫ ⇠ YNv�↵LNHv

3
/⇤2,

so in particular YN can be neglected 2. This also implies that lepton flavour is conserved
in L4. For simplicity we focus on the regime in which lepton flavour is also conserved in
the N sector of L6. As a consequence, the three lepton families factorise (in particular
they evolve independently under the RGEs). We can therefore ignore flavour indices for

2Even if, as we show below, ↵LNH is generated radiatively and therefore YN ⇠ g2v2/(16⇡2⇤2) to keep
m⌫ small, YN is of order . 10�4 for ⇤ = 1 TeV, and hence much smaller than even the muon Yukawa.

/L ONNNN = (N cN)(N cN)

/L & /B
OQQdN = (Qc✏Q)(dcN)

OuddN = (ucd)(dcN)

4

𝒪NNH = (NcN) (H†H)



Higgs-N operators

   (for simplicity)

LEP, 90’s; PDG, RPP 2018
ℬ(Z → ννγ(γ)) ≲ 3 × 10−6 ⇒ set αNZ = αHN = 0
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2Even if, as we show below, ↵LNH is generated radiatively and therefore YN ⇠ g2v2/(16⇡2⇤2) to keep
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New Higgs decays



Higgs searches in h → γ(γ) + inv
Shape analysis: small signal on top of large background
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@  HL-LHC with 

ℬ(h → γ + pmiss
T ) ∼ 1.2 × 10−4

ℬ(h → γγ + pmiss
T ) ∼ 4.2 × 10−5

ℒ = 3 ab−1

7

Operator
↵max ⇤min [TeV]

Channel
for ⇤ = 1 TeV for ↵ = 1

OLNH 4.2⇥ 10�3 15 h ! � + pmiss
T

ONNH 5.3⇥ 10�4 1900 h ! �� + pmiss
T

ONA 0.21 2.2 h ! �� + pmiss
T

TABLE I: Maximum (minimum) value of ↵ (⇤) for ⇤ =
1 TeV (↵ = 1) allowed by the proposed searches quoted in

the last column. We have assumed lepton flavour universality

in couplings to N .

pendently by setting the remaining two to zero. (Note
that any other choice would lead to a more stringent con-
straint.) The sensitivity at the high-luminosity LHC can
be read in Tab. I. We remind the reader that all these
prospects apply only if ↵NA/⇤2 & 0.001 � 0.1 TeV�2,
depending on mN ; see Fig. 2.

V. CONCLUSIONS

In summary, we have studied the phenomenology of
the SMEFT extended with a light RH neutrino N in the
regime in which the latter decays almost exclusively into
a photon and a neutrino.

Using low-energy and LHC data such as measurements
of the W , Z and Higgs bosons; bounds on neutrino dipole
moments, measurements of SM di↵erential distributions
at the LHC (as implemented in Contur [51]), as well
as searches for single photons with missing energy [43];
we have singled out those directions not yet constrained.
They include mostly operators triggering new Higgs de-
cays, namely h ! � + pmiss

T
and h ! �� + pmiss

T
.

We have subsequently provided new search strategies
to be performed at the LHC sensitive to the aforemen-
tioned processes. For order one couplings, we have shown
that, with 3 ab�1 of data, these analyses can potentially
unravel new physics at scales ⇤ . 2 TeV (2000 TeV)
for lepton number conserving (violating) operators. For
comparison, let us add that searches for h ! NN trig-
gered by ONNH , with N ! qq` are expected to test
scales as large as ⇠ 100 TeV [27]. Likewise, top de-
cays into b`N , mediated by four-fermion operators and
with N long-lived, have been shown to probe only ⇤ . 1
TeV [24].
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Appendix A: Model

Let us consider the SM extended with two vector-like
fermions XE ⇠ (1,2)1/2, XN ⇠ (1,1)1 and a singly-
charged scalar ' ⇠ (1,1)1. The numbers in parentheses
and the subindex represent the quantum numbers under
(SU(3)c, SU(2)L) and the hypercharge, respectively. We
also assume that these new fields are odd under a Z2

symmetry under which all SM fields as well as N are
even.

The new relevant Lagrangian reads

L = XE(i /D � MXE )XE + XN (i /D � MXN )XN

+ (Dµ')⇤(Dµ') � M2
'
'⇤' � �'H('⇤')(H†H)

+


gXXEH̃XN + gLXE'L + gNXN'N + h.c.

�
.

(A1)

Let us focus on the regime MXE , MXN , M' ⇠ M � v,
gN ⌧ gL, gX . The new particles can be integrated out
before EWSB by matching (o↵-shell) amplitudes in the
UV to the corresponding amplitudes in the EFT. One
can easily check that tree-level operators vanish.

Therefore, we concentrate first on the amplitude given
by the diagrams in Fig. 4. Using p2, p3 and p4 as inde-
pendent four-momenta (p1 = p2 + p3 + p4), and to first
order in pi we get:



4-fermion pair-N operators
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ℒSd
= gdNdRNc

RSd + gueuRec
RSd + gQLQϵLcSd + h.c.

ℒSu
= guNuRNc

RSu + h.c.

ℒSQ
= gQNQNRSQ + gdLdRLϵSQ + h.c.

• HNLs are pair produced  
via pair-  operators


• Lightest HNL cannot decay  
via these operators; 
it decays via mixing

NR

Examples of UV completions

N

cqN

Λ2
=

g2
qN

2m2
Sq

, q = d, u, Q

Cottin, Helo, Hirsch, AT, Wang, 2105.13851
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• MadGraph5 cannot handle 
Majorana fermions in operators 
with more than 2 fermions; 
renormalisable completions  
are needed to effectively 
implement such operators



4-fermion pair-N operators at HL-LHC
Reach on active-heavy neutrino mixing (for fixed new physics scale)
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Type-I Seesaw target region

AL3X: 250 fb
-1

MAPP1 : 30 fb
-1

ANUBIS: 3 ab
-1

MAPP2: 300 fb
-1

CODEX-b: 300 fb
-1

MATHUSLA: 3 ab
-1

FASER: 150 fb
-1

ATLAS: 300 fb
-1

FASER2: 3 ab
-1

ATLAS: 3 ab
-1

Λ = 2 TeV

Cottin, Helo, Hirsch, AT, Wang, 2105.13851



4-fermion pair-N operators at HL-LHC
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4-fermion pair-N operators at HL-LHC
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4-fermion pair-N operators at HL-LHC
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4-fermion single-N operators
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ℒΦ = gQdQΦdR + gQuQΦ̃uR + gLNLΦ̃NR + h.c.

• Both HNL production  
and decay can be  
dominated by the operator

Examples of UV completions

Beltrán, Cottin, Helo, Hirsch, AT, Wang, 2110.15096



4-fermion single-N operators
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Γ(N → ℓqq′￼) =
c2

𝒪 m5
N

f𝒪 512 π3 Λ4
, f𝒪 = 1 (4) for 𝒪duNe (3 remaining operators)

Example of HNL single production cross sections

Figure from R. Beltrán’s master thesis




σmix ∝ |VeN |2

σ𝒪 ∝ Λ−4

Partial decay width of HNL

Beltrán, Cottin, Helo, Hirsch, AT, Wang, 2110.15096



4-fermion single-N operators at HL-LHC
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Assumption: both HNL production and decay are dominated by the operator 
(fulfilled everywhere in the plots if )|VαN |2 ≲ 10−9

(u, d) e (u, d) τ

(c, s) e (c, s) τ

ATLAS: 3 ab−1

Beltrán, Cottin, Helo, Hirsch, AT, Wang, 2110.15096



Top-N operators

23

u(d)

g

u(d)

t(b)

N̄

N

(a)

t(b)

g

u(d)

t(b)

N̄

N

(b)

d

g

d

t(b)

N̄

e�(⌫)

(a)

t(b)

g

d

t(b)

N̄

e�(⌫)

(b)

Beltrán, Cottin, Günther, Hirsch, AT, Wang, 2501.09065

s = 14 TeV s = 14 TeV

c13
uN

c13
uN

c13
duNe

c13
duNe



Top-N operators

24Beltrán, Cottin, Günther, Hirsch, AT, Wang, 2501.09065



Conclusions
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Neutrino masses may be pointing towards the existence of HNLs


HNLs may have masses below the EW scale and new heavy physics  
may exist at scales , hence NSMEFT


HNLs may be (effectively) stable, decaying promptly or long-lived


In addition to active-heavy mixing, they can be produced through  
new effective interactions directly in partonic collisions or in meson decays*


Rich programme for LLP searches at HL-LHC: 


• ATLAS, CMS


• ANUBIS, CODEX-b, FACET, FASER, MATHUSLA, MoEDAL-MAPP


HL-LHC will be sensitive to new physics scales up to 


• 20 TeV for quark-  operators with first generation quarks


• a few TeV for top-  operators

Λ ≫ v

NR

NR



Backup slides
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Motivation: neutrino masses
There are variants of the seesaw mechanism with low  and large   e.g.


Inverse seesaw mechanism





   and       


 and 





Small  is technically natural, since for , LN symmetry is restored

M VαN

−ℒmass =
1
2 (νL Nc

R SL)
0 mD 0

mT
D 0 MT

R

0 MR μ

νc
L

NR

Sc
L

+ h.c.

mν = mD M−1
R μ M−1T

R mT
D V2

αN ∼ ( mD

MR )
2

∼
mν

μ

mν ∼ 0.01 eV |VαN |2 ∼ 10−2 ÷ 10−8

for YN ∼ 10−3 , MR ∼ 1 ÷ 103 GeV , μ ∼ 10−9 ÷ 10−3 GeV

μ μ = 0
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Novel LHC analysis for t → bl + inv

A multivariate analysis based on a BDT classifier ( )pbi
T , pji

T, mW, ΔRij
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@  HL-LHC with 

A =
N+ − N−

N+ + N− {A < 0 in   SM
A > 0 in   NSMEFT

ℬ(t → bℓN ) ∼ 2 × 10−4

ℒ = 3 ab−1

Alcaide, Banerjee, Chala, AT, 1905.11375



Majorana HNL

   is  Majorana
−ℒmass = LH̃YNN +
1
2

NcmNN + h.c. ⇒ N

Γ(N → νγ) =
m3

Nv2

4πΛ4
α2

NA αNA = cWαNB + sWαNW

29

Duarte, Peressutti, Sampayo, 1508.01588

N → νγ

N → 3 f

Butterworth, Chala, Englert,  
Spannowsky, AT, 1909.04665

Let’s restrict to Higgs-N operators

For the analysis including 4-fermions in this regime see

Biekötter, Chala, Spannowsky, 2007.00673

prompt

stable

CONTUR exclusion



4-fermion pair-N operators
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suppression for  GeV

σD(dd → NN) =
c2

dN

192πΛ4
s 1 −

4m2
N

s
1 +

1
3 (1 −

4m2
N

s )
σM(dd → NN) =

c2
dN

144πΛ4
s (1 −

4m2
N

s )
3/2

⇒ mN ≳ 100

Examples of HNL pair production cross section for  ( )𝒪dN gdN = 2 ⇔ c11
dN = 1

Cottin, Helo, Hirsch, AT, Wang, 2105.13851




ℒmin = −
g

2
VαN ℓα γμPLN Wμ −

g
2 cos θW

VαN να γμPLN Zμ + h.c.

HNL decay via active-heavy mixing
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Long-lived HNLs

Proper decay length:  


Decay length in the lab frame:  


cτN =
1

ΓN
∝

1
|VαN |2

d = β γ c τN
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Local detectors at HL-LHC
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Images from O. Brandt’s talk at Oxford Particle Physics Seminar on 9/6/2020

ATLAS and CMS

 

Nearly  coverage

Backgrounds

d ≲ 𝒪 (1 m)
4π



FASER: ForwArd Search ExpeRiment
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Images from O. Brandt’s talk at Oxford Particle Physics Seminar on 9/6/2020

Cylinder with  cm and  m




Boosted cross section

 coverage

r = 10 ℓ = 1.5
d ∼ 480 m

4π/108

Started data taking in 2022



CODEX-b: COmpact Detector for EXotics at LHCb
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Images from O. Brandt’s talk at Oxford Particle Physics Seminar on 9/6/2020

Box of 




 coverage

Lower luminosity

10 m × 10 m × 10 m
d ∼ 25 m
4π/102



MATHUSLA: MAssive Timing Hodoscope for Ultra Stable neutraL pArticles
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Images from O. Brandt’s talk at Oxford Particle Physics Seminar on 9/6/2020

Box of 




 coverage

100 m × 100 m × 25 m
d ∼ 𝒪 (100 m)
4π/25



ANUBIS: AN Underground Belayed In-Shaft search experiment
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Images from O. Brandt’s talk at Oxford Particle Physics Seminar on 9/6/2020

Cylinder with  m and  m




 coverage

r = 9 h = 56
d ∼ few 10 m
4π/50



Number of  events
Projected number of signal events at ATLAS:




	 	 	 	 	 	  MadGraph5		  MadSpin+Pythia8  


Decay probability of an HNL in a far detector (approximately):


 


Projected number of signal events at a far detector:




	 	 	 	   MadGraph5 Pythia8   analytical


NATLAS
S = σ(pp → NN ) ⋅ ℒ ⋅ BR(N → ℓjj) ⋅ 2 ⋅ ϵ

P[N decay] = e−L1/βγcτ − e−L2/βγcτ

NFD
S = 2 ⋅ σ(pp → NN ) ⋅ ℒ ⋅ ⟨P[N decay in f.v.]⟩ ⋅ BR(N → vis.)
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Minimal mixing scenario at HL-LHC
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NLEFT: low-energy EFT with N
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For low-energy processes at energies  and GeV-scale HNLs,  
the appropriate EFT is the low-energy EFT extended with  (NLEFT),  
which does not contain  


 





 are effective operators invariant under 


 operators with SM fields: Jenkins, Manohar, Stoffer, 1709.04486

 operators with : Chala, AT, 2001.07732; Li, Ma, Schmidt, 2005.01543


 operators with : Li et al., 2105.09329

E ≪ v
NR

t, H, Z, W±

ℒNLEFT = ℒren + ∑
d≥5

∑
i

c(d)
i 𝒪(d)

i

ℒren = ℒQCD+QED + i NR ∂ NR − [ 1
2

νLMννc
L +

1
2

Nc
RMNNR + νLMDNR + h.c.]

𝒪(d)
i SU(3)C × U(1)em

d ≤ 6
d ≤ 6 NR
d ≤ 9 NR



Neutral current quark-N 4-fermion operators

In the NLEFT,  and  (no top quark)


Charged current quark-  operators have been studied in De Vries et al., 2010.07305

nd = 3 nu = 2

NR

41

NLEFT pair-  operatorsNR NLEFT single-  operatorsNR

Beltrán, Cottin, Helo, Hirsch, AT, Wang, 2210.02461



Matching to NSMEFT: pair-N operators

 LNC in NLEFT ⇔  in NSMEFTd = 6 d = 6
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NSMEFT pair-  operatorsNR
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Zij
dR
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g2

Z

m2
Z

Zij
uR

ZN

cV,LR
dN,ij = V*kiVljCkl

QN −
g2

Z

m2
Z

Zij
dL

ZN

cV,LR
uN,ij = Cij

QN −
g2

Z

m2
Z

Zij
uL

ZN

gZ ≡
e

sWcW

Zij
ψ ≡ (T3

ψ − Qψs2
W) δij

ZN ≡ −
v2

2
CHN

cS,RR
dN,ij = −

v

2 2
V*kiC

kj
QNdH cS,RR

uN,ij = −
v

2 2
Cij

QNuH

cS,LR
dN,ij =

v

2
VkjCik

dQNH cS,LR
uN,ij =

v

2
Cij

uQNH

 LNV in NLEFT ⇔  in NSMEFTd = 6 d = 7



HNL production in meson decays

• 	 	 	 	 	 	 	   for  

	 	 	 	 	 	 	 	 	 	 	                   for  

	 	 	 	 	 	 	 	 	 	 	                for  

	 	 	 	 	 	 	 	 	 	 	                   for  

	 	 	 	 	 	 	 	 	 	 	                 for  


• 	 	 	 	 	 	 	 …


• 	 	 	 	 	 	 	 …


• 	 	 	 	 	 	 	 …

c → u D0 → NN (νN ) D0 → π0 , η , η′￼ (ρ0 , ω) q = u
D+ → π+ (ρ+) q = d
D+

s → K+ (K*+) q = s
ηc → D0 (D*0) q = c
B+

c → B+ (B*+) q = b

b → d B0 → NN (νN )

b → s B0
s → NN (νN )

s → d KS/L → NN (νN )
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qi

qj

P

N

N, ν

q

q

qj

qi
P

P′�, V

N

N, ν

Pseudoscalar  
meson

Pseudoscalar  
or vector  
meson

HNLs from D- and B-meson decays: Beltrán, Cottin, Helo, Hirsch, AT, Wang, 2210.02461 
HNLs from K-meson decays: Beltrán, Günther, Hirsch, AT, Wang, 2309.11546



Partial meson decay widths
Two-body decay:





 


Three-body decays require the knowledge of transition form factors:




 

Γ (P → NN ) =
mP

32π
1 −

4m2
N

m2
P [2 fP

2
cV,RR

qN, ij − cV,LR
qN, ij

2
m2

N

+ f S
P

2{( cS,RR
qN, ij − cS,LR

qN, ij

2
+ cS,RR

qN, ji − cS,LR
qN, ji

2

) (1 −
2m2

N

m2
P )

+2 [(cS,RR
qN, ij − cS,LR

qN, ij) (cS,RR
qN, ji − cS,LR

qN, ji) + h.c.] m2
N

m2
P }

+fP f S
P{(cV,RR

qN, ij − cV,LR
qN, ij) (cS,RR *

qN, ij − cS,LR *
qN, ij + cS,RR

qN, ji − cS,LR
qN, ji) mN + h.c.}]

⟨0 |qiγμγ5qj |P(p)⟩ = ifP pμ ⟨0 |qiγ5qj |P(p)⟩ = i
m2

P

mqi
+ mqj

fP ≡ if S
P

⟨P′￼(p′￼) |𝒥 |P(p)⟩ and ⟨V(p′￼, ϵ) |𝒥 |P(p)⟩

𝒥 ∈ {qiγμqj , qiγμγ5qj , qiqj , qiγ5qj , qiσμνqj}
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Branching ratios of  D and B meson decays
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Number of  events
Projected number of signal events:





	 	 	 	 	 	 	 analytical	 	 	 Pythia8     analytical


Decay probability of an HNL in a far detector (approximately):


 


Inclusive production numbers of D and B mesons at the HL-LHC with 
 and :


NS = ∑
i

2 ⋅ NMi
⋅ BR(Mi → NN + anything) ⋅ ⟨P[N decay]⟩ ⋅ BR(N → vis.)

P[N decay] = e−L1/βγcτ − e−L2/βγcτ

s = 14 TeV ℒ = 3 ab−1
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L1

L2



Reach on active-heavy neutrino mixing (for fixed Wilson coefficient)

4-fermion NLEFT operators at HL-LHC
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Reach on Wilson coefficients (for fixed active-heavy neutrino mixing)
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4-fermion NLEFT operators at HL-LHC
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Reach on Wilson coefficients (for fixed active-heavy neutrino mixing)

4-fermion NLEFT operators at HL-LHC

49

0.2 0.4 0.6 0.8 1.0
mN [GeV]

10°610°6

10°510°5

10°410°4

10°310°3

10°210°2

10°110°1

100100

101101

102102

103103

104104

c
[T

eV
°

2
]

|VlN |2 = 10°7

0.2 0.4 0.6 0.8 1.0
mN [GeV]

10°610°6

10°510°5

10°410°4

10°310°3

10°210°2

10°110°1

100100

101101

102102

103103

104104

c
[T

eV
°

2
]

|VlN |2 = 10°10

MATHUSLA: 3 ab°1

MAPP2: 300 fb°1

MAPP1: 30 fb°1

FASER2: 3 ab°1

FASER: 150 fb°1

FACET: 3 ab°1

CODEX-b: 300 fb°1

ANUBIS: 3 ab°1

AL3X: 250 fb°1

D0 ! inv.

c ! u cS,RR
uN,12 (LNV)

0.5 1.0 1.5 2.0 2.5 3.0
mN [GeV]

10°610°6

10°510°5

10°410°4

10°310°3

10°210°2

10°110°1

100100

101101

102102

103103

104104

c
[T

eV
°

2
]

|VlN |2 = 10°7

0.5 1.0 1.5 2.0 2.5 3.0
mN [GeV]

10°610°6

10°510°5

10°410°4

10°310°3

10°210°2

10°110°1

100100

101101

102102

103103

104104

c
[T

eV
°

2
]

|VlN |2 = 10°10

MATHUSLA: 3 ab°1

MAPP2: 300 fb°1

MAPP1: 30 fb°1

FASER2: 3 ab°1

FASER: 150 fb°1

FACET: 3 ab°1

CODEX-b: 300 fb°1

ANUBIS: 3 ab°1

AL3X: 250 fb°1

B0 ! inv.

b ! d cS,RR
dN,31 (LNV)



New physics scales

LNC operators:








LNV operators:





c(6)
NLEFT ∼ C(6)

NSMEFT ∼
1

Λ2
⇒ Λ ∼ [ 1

c(6)
NLEFT ]

1/2

c(6)
NLEFT ≲ 10−4 (10−5) ⇒ Λ ≳ 100 (316) TeV

c(6)
NLEFT ∼

v

2 2
C(7)

NSMEFT ∼
1

2 2

v
Λ3

⇒ Λ ∼ [ 1

2 2

v
c(6)

NLEFT ]
1/3

c(6)
NLEFT ≲ 10−4 (10−5) ⇒ Λ ≳ 10 (21) TeV
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Matching to NSMEFT: single-N operators

 LNC in NLEFT ⇔  in NSMEFTd = 6 d = 6

51

NSMEFT single-  operatorsNR

cV,RR
dνN,ijα = −

v

2
Cijα

dNLH −
g2

Z

m2
Z

Zij
dR

Zα
νN cV,RR

uνN,ijα = −
v

2
Cijα

uNLH −
g2

Z

m2
Z

Zij
uR

Zα
νN

cV,LR
dνN,ijα = −

v

2
V*kiVlj (Cklα

QNLH1 − Cklα
QNLH2) −

g2
Z

m2
Z

Zij
dL

Zα
νN cV,LR

uνN,ijα = −
v

2
Cijα

QNLH1 −
g2

Z

m2
Z

Zij
uL

Zα
νN

 LNV in NLEFT ⇔  in NSMEFTd = 6 d = 7

cS,RR
dνN,ijα = V*ki (Cαkj

LNQd −
1
2

Cαjk
LdQN)

cT,RR
dνN,ijα = −

1
8

V*kiC
αjk
LdQN

cS,RR
uνN,ijα = cT,RR

uνN,ijα = cS,LR
dνN,ijα = 0

cS,LR
uνN,ijα = Cjiα *

QuNL

Zα
νN ≡

v3

4 2
(Cα

NL1 + 2Cα
NL2)



Branching ratios: b → s scenario
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Branching ratios: single-N operators
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Other experiments
AL3X: A Laboratory for Long-Lived eXotics

@ALICE

Cylinder with  m and  m


 m


FACET: Forward-Aperture CMS ExTension

@CMS

Cylinder with  m and  m


 m


MoEDAL-MAPP: MoEDAL’s Apparatus for Penetrating Particles

(MoEDAL: Monopole and Exotics Detector at the LHC)

@LHCb

MAPP1: 

MAPP2: 


0.85 m < r < 5 ℓ = 12
cτ ∼ 10

r = 0.5 ℓ = 18
cτ ∼ 100

∼ 130 m3

∼ 430 m3

cτ ∼ 50 m
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Existing constraints on BRs

	 	 	 BELL’17	 	 	 	 	 BABAR’12	 	 	 	 BABAR’13

	 	 	 	 	 	 	 	 	 BELL’17 
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PDG 2022



Minimal 3+1 scenario

56

Beltrán et al., 2110.15096 

(update of Cottin, Helo, Hirsch, 1806.05191)



Long-lived HNLs

HNLs can be long-lived particles (LLPs)


HNL decay width calculation:  
Atre, Han, Pascoli, Zhang, 0901.3589

Bondarenko, Boyarsky, Gorbunov, Ruchayskiy, 1805.08567

57

Figure from  
Abada, Bernal, Losada, Marcano,  
1807.10024



4-fermion quark-N operators (kaons)
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NLEFT pair-  operators (NC)NR NLEFT single-  operators (CC)NR



Branching ratios: pair-N operators
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Branching ratios: single-N operators
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Benchmark scenarios
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Pair-N benchmarks B1 and B2
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B1

B1

B2

B2



Single-N benchmarks B3 and B4
Production and decay of  through the same operator structure ,  
but with different quark flavour indices: 12 (for production) vs. 11 ( for decay)

N 𝒪V/S, RR
udeN
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B4B3



Single-N benchmarks B5 and B7
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B5

B5

B7

B7


