

Direct searches for new neutral leptons with **ATLAS**

Margaret Lutz

New-v physics Durham 10 April 2025

Neutral lepton searches in ATLAS

- Wide ranging searches for neutral leptons
- Look for very heavy ~TeV scale
 - Heavy W_R decaying to heavy N_R
- Look in decays of tt ~15 75 GeV
 - First time exploiting tt decays for heavy righthanded neutrino search
 - Complementary to other searches
- Look for long-lived ~1 20 GeV
 - Focus on more-displaced decays requires specialized reconstruction
 - Nicely complementary in mass and ct

95% CL limit ^N/₂₀ 10⁰ ATLAS Preliminary Observed ----- Expected Prompt $2\ell + \ge 2$ jets 10-JHEP 07 (2015) 162 \sqrt{s} = 8 TeV, 20.3 fb⁻¹ Prompt 3*l* 10⁻² JHEP 10 (2019) 265 \sqrt{s} = 13 TeV, 36.1 fb⁻¹ VBF Same-sign 2*l* 10⁻³ PLB 856 (2024) 138865 \sqrt{s} = 13 TeV, 140 fb⁻¹ $t\bar{t}$ Same-sign 2 ℓ 10⁻⁴ PRD 110 (2024) 112004 \sqrt{s} = 13 TeV, 140 fb⁻¹ **Displaced tracker** 10⁻⁵ arXiv:2503.16213 \sqrt{s} = 13 TeV, 140 fb⁻¹ Other Experiments 10⁻⁶ CHARM, PLB 166 (1986) 473 DELPHI, ZPC 74 (1997) 57 L3, PLB 517 (2001) 67 BELLE, PRD 87 (2013) 071102 10-10² 10^{0} 10¹ 10^{3} 10⁴ $m_{\rm N}$ [GeV]

Heavy right handed W_R and N_R

Heavy right handed W_R and N_R

- Left right symmetric model
 - Compatible with type-I and type-II seesaw mechanisms
 - Introduces heavy right handed W_R and N_R
 - N_R gauge partners left-handed neutrino fields
 - Single flavor coupling to e, μ , assuming no flavor mixing
 - Dirac 100% LNC, and Majorana 50% LNC, 50% LNV
- Highest end of the mass range promptly decay
- Analysis targets Keung-Senjanović process
- Two scenarios $m_{W_R} > m_{N_R}$ and $m_{N_R} > m_{W_R}$
 - If $m_{W_R} \sim m_{N_R}$ or $m_{W_R} < m_{N_R}$, resolved regime
 - If $m_{W_R} >> m_{N_R}$ boosted regime

Heavy right handed W_R and N_R - Resolved

- m_{W_R} m_{N_R} < 4 TeV (including m_{W_R} < m_{N_R}), resolved regime Two distinctly reconstructed R = 0.4 jets
- Four different signal regions for Majorana interpretation Two signal regions for Dirac
- Fit variable in rSROS:
 - $m_{W_R} = m_{IIJJ}$ (if $m_{W_R} > m_{N_R}$)
 - Binned 0 5 TeV in 500 GeV steps
 - $m_{W_R} = m_{jj}$ (if $m_{W_R} < m_{N_R}$)
 - Binned 0 3 TeV in 500 GeV steps
- Fit variable in rSRSS:
 - $h_T = p_T(\ell_1) + p_T(\ell_2) + p_T(j_1) + p_T(j_2)$
- Five variable bins 400 GeV 2.2 TeV arXiv:2304.09553

Heavy right handed W_R and N_R - Resolved

- Main backgrounds in rSROS category tt and Z+jets
 - Normalization factor for Z+jets to correct multijet mismodelling
 - rCROS not used in fit because of this
- Main backgrounds in rSRSS category

- WZ $\rightarrow \ell\ell$, WZ $\rightarrow \ell\nu\ell\nu$

 $-Z \rightarrow ee$ (+jets), t events with charge misidentification

- Charge flip probability determined in extra control region

- Small extra background from misidentified leptons calculated through fake factor
- Shaded bins used in the fit

6

Heavy right handed W_R and N_R - Boosted

 m_{W_R} - m_{N_R} > 4 TeV boosted regime Reconstruct one large-R (R = 1.0) jet and 2 leptons or Reconstruct large-R jet and one *e* (µ can be distinguished within jet)

Discriminant variable becomes $m_{W_R} = m_{IIJ}$ or $m_{W_R} = m_{eJ}$

- Divided into 4x 1 TeV bins expect signal in **two highest mass bins**
- In μ channel, require $m_{\mu\mu} > 200$ GeV
- Main background from Z+jets
- Only one jet, so no mismodelling issue
- VR regions used to verify method and extrapolations to higher mass bins

- For the 1 large-R jet + 2e regions, $m_{W_R} = m_{eeJ}$

 - Expect signal in two highest mass bins
- Main background from **Z+jets**
- Validation regions used to check data vs MC shape
- Good agreement seen

Heavy right handed W_R and N_R - Boosted

- New category added since previous version of search
 - Target higher m_{W_R} m_{N_R} , orthogonal to 2e channel
 - Signal regions are 3-4 and 4+ TeV bins of $m_{W_{R}} = m_{eJ}$
 - Here, no m_{II} variable use $cos(\theta)$, polar angle of e from W decay, and |cos0| quality of the e
 - Main backgrounds: W+jets, di-jet and **y+jets**, with a **fake e**
 - Shaded regions used in the fit

electron definition

Leading

Heavy right handed W_R and N_R

- No significant excess seen, set limits at 95% CL
- Resolved and boosted channels not orthogonal and are not combined
- Significant increase in sensitivity in Dirac and Majorana scenarios for e and μ coupling
- Does not see the same $\sim 3\sigma$ local excess observed by previous <u>CMS</u> search

Heavy neutrino via top production

Heavy neutrino via top production

- First time searching for HNL in tt events
- Type-I seesaw mechanism
 - 3 Majorana HNL candidates, with single flavor mixing to e, μ, τ
- Target final state in which ℓ_1 , ℓ_2 are same-charge ee or $\mu\mu$
 - Only focus on LNV processes
- Consider N mass range 10 75 GeV
 - HNL decays promptly
- Other W and W* both decay hadronically
 - Final state 2 same sign, same flavor leptons, 2 b-jets, 4 light jets

charge conjugate also considered

Heavy neutrino via top production - ee analysis regions

- Prominent backgrounds from ttW, (also ttH, ttZ, ttγ), as well as from photon conversion, mis-identified charge, mis-reconstructed hadrons
- Electron charge determined by curvature of the track more difficult for high-p_T e
 - BDT-based tool used, known as "electron charge identity selector" (ECIDS)
- Likelihood based discriminant used for e/γ ambiguity removal
- m_{II} < 80 GeV m_{II} < mW

Analysis regions for the <i>ee</i> channel					
$/\gamma$ ambiguity removal	ECIDS criteria	mee requirement			
Both e	Both <i>e</i>	< 80 GeV			
Both e	Both <i>e</i>	> 100 GeV			
Both e	Both <i>e</i>	> 70 GeV			
At most one e	Both <i>e</i>	> 75 GeV and Z v			
Both e	At most one e	> 60 GeV and $Z v$			

Heavy neutrino via top production - $\mu\mu$ analysis regions

- Again, ttW is a dominant background process
- For μ charge flipping found to be neglig
- Main source of same-sign $\mu\mu$ pairs from heavy flavor decays
- Once again, $m_{\parallel} < 80 \text{ GeV} m_{\parallel} < mW$
- For $\mu\mu$ channel, no Z-mass veto needed
- For HF CR, despite isolation criteria on ≤ 1 of the muons, $m_{\mu\mu}$ requirement > 75 GeV to reduce signal contamination
- For all signal regions, BDT used to further separate signal from background

Analysis regions for the $\mu\mu$ channel			
Region	Isolation criteria	$m_{\mu\mu}$ requirement	
SR	Both μ	< 80 GeV	
$t\bar{t}W$ CR	Both μ	> 80 GeV	
HF CR	At most one μ	> 75 GeV	
	Ana Region SR <i>tīW</i> CR HF CR	Analysis regions for theRegionIsolation criteriaSRBoth μ $t\bar{t}WCR$ Both μ HFCRAt most one μ	

Heavy neutrino via top production - BDT

Ū Ū

Events

Data / Bkg.

30

25

20

15ł

10

- Two BDTs trained low mass (15 - 40 GeV) high mass (45 - 75 GeV)
- Mixture of signal samples and all background samples
- Key variables:
 - Invariant mass m
 - Missing energy E^{Tmiss}
 - Invariant mass of W₁ m_{IIII}
 - p_T of the subleading lepton $p_T \ell_2$

Heavy neutrino via top production - BDT

Events

40

30

20

10

1.5⊧

0.5

Data / Bkg

- Two BDTs trained low mass (15 - 40 GeV) high mass (45 - 75 GeV)
- Mixture of signal samples and all background samples
- Key variables:
 - Invariant mass m_{II}
 - Missing energy E^{Tmiss}
 - Invariant mass of W₁ m_{IIjj}
 - p_T of the subleading lepton $p_T \ell_2$

Heavy neutrino via top production

- No significant excess found
- Limits set for coupling to e, μ , and τ
 - First ATLAS search to target T coupling
 - Extends the mass range of the previous ATLAS prompt search

arXiv:2408.05000

ing ious ATLAS

Displaced HNL search

Displaced HNL

 $W^+ \sim \sim$

- A search for long-lived HNLs
 - Leptonic and semi-leptonic decays of the HNL
- Analysis includes
 - Simplified single flavor mixing (1SFH) model to e, μ
 - More realistic 2 quasi-degenerate HNL (2QDH) model
 - Normal mass hierarchy: $x_e = 0.06$, $x_\mu = 0.48$, and $x_\tau = 0.46$ •
 - Inverted mass hierarchy: $x_e = x_{\mu} = x_{\tau} = \frac{1}{3}$
 - Dirac-type limits LNC only
 - Majorana-type limits both LNC and LNV
 - When $M_1 \neq M_2$ but $\Delta M \ll M_N$
 - \rightarrow LNC/LNV refers to the total lepton number

arXiv:2503.16213

HNL has non-zero mixing with all three neutrino flavors - no inherent flavor conservation

Displaced HNL - displaced vertex

Search targets the long-lived, less massive HNLs, with access to lower coupling values

$$|U_{tot}|^2 \sim \frac{1}{c\tau m_{\mathcal{N}}^5}$$

- HNL mass < 20 GeV, ст 0.1 1000 mm
- Decay of the HNL reconstructed as a displaced vertex (DV) via customized algorithm
 - Uses standard ATLAS tracks and displaced tracks
 - Makes a two track seed, strict track requirements
 - Track attachment step counterintuitive but reduces background
- Select two-track vertices with == 2 leptons (leptonic) == 1 lepton (semi-leptonic)

Displaced HNL - Signal Region selections

- Final state prompt lepton and displaced vertex
 - Single lepton trigger from prompt lepton
 - Custom 2-track displaced vertex
- Fiducial requirements: Leptonic: 4 < r_{DV} < 300 mm, material veto on *ee* DVs Semi-leptonic: 20 $< r_{DV} < 300$ mm, material veto on all DVs

Material veto cuts out 42% of fiducial volume

- Mass vetos in place for Z-boson, K_S, J/ ψ
- Main discriminant for Signal Region W-mass selection
 - 40 < m_{III} < 90 GeV, 70 < m_{IIπ} < 90 GeV

Displaced HNL - discriminating variable

- In the leptonic channel, the reconstructed HNL mass, m_{HNL}, is calculated using the W mass and energy-momentum conservation
 - In leptonic channel $m_{DV} < m_{HNL}$
 - Allows for clean reconstructed mass variable despite missing energy from the neutrino
 - Mass calculation fully detailed in <u>arXiv:2204.11988</u>
- In the semileptonic channel m_{HNL} is equivalent to m_{DV}
 - Only charged decay products
- m_{HNL} and m_{DV} used as the fitted variable

Displaced HNL - backgrounds

- Main backgrounds after signal selection
 - Heavy flavor decays template from MC samples of tt and vector boson production in association with heavy-flavor jets (V+HF) production
 - Mis-reconstructed leptons estimated using data
 - Use background enriched "relaxed" sideband regions in the W-boson mass
 - Loosened isolation criteria
 - Heavy flavor template subtracted
 - Take shape from relaxed regions and use a transfer factor to apply to SR-like sideband regions
 - Use the average shape between low and high sidebands

Displaced HNL

- Fit performed across signal and control regions, with 21 bins across the m_{HNL} and m_{DV} variables
- No significant excess found limits set at 95% CL
- Extending limits from previous ATLAS searches
- Complementary in mass and lifetime reach to other ATLAS searches
- First ATLAS search to include semi-leptonic decays

Overall

- Very exciting HNL search program at ATLAS
 - Some older results in the backup and new coming soon
 - No new physics yet :(
- Only just getting started on searches with Run 3 data
- Plenty of upgrades underway to prepare for the HL-LHC era
- Thanks for listening!

Backup

The ATLAS detector (LHC Run 2 edition)

25m <

- A forward-backward symmetric, 4π coverage, right-handed coordinate system
- Cylindrical geometry $\rightarrow R = \sqrt{x^2 + y^2}$, $\eta = -\ln \tan \frac{\theta}{2}$, $\varphi = 0$ along x-axis
- Inner detector (ID) R < ~1m, $|z| < ~3m, |\eta| < 2.5$
 - Pixel, SCT silicon, precision tracking
 - TRT electron ID
- Calorimeters
 - EM calorimeter (LAr/lead)
 - Hadronic calorimeter (steel/scintillator tile), (copper/LAr)
- Muon spectrometer (MS)
 - MDT and CSC precision tracking
 - TGC and RPC triggering, φ measurements
- Two-tiered trigger system with L1 online selection and HLT offline selection

Heavy right handed W_R and N_R

backup

Heavy right handed W_R and N_R - selections

		Resolved		Boosted		
		Baseline	Fake estimation	Baseline	Leading	Fake estimation
	$ \eta $		(0, 1.37] or [1.52,	2.47]		
	$p_{\rm T}~({\rm GeV})$	> 25		> 25	> 200	
Electrons	Quality	Tight	Loose	Medium	Tight	
	Isolation	Loose	Fail Loose or Tight	Loose	HighPtCaloOnly	Loose but fail
						HighPtCaloOnly
		Baseline	Fake estimation	Baseline	Leading	
	$p_{\rm T}~({\rm GeV})$	> 25		> 28	> 200	
Muons	$ \eta $	< 2.5			< 2.5	
	Quality	High- $p_{\rm T}$ if pT > 300 GeV else Medium		Medium	Tight	
	Isolation	FixedCutTightTrackOnly	fail FixedCutTightTrackOnly		Tight	
	$p_{\rm T}~({\rm GeV})$		> 20			
Small- <i>R</i> jet	$ \eta $					
	$p_{\rm T}~({\rm GeV})$				> 200	
Large- <i>R</i> jet	$ \eta $			< 2		

Order	Object discarded	Object kept	Matching condition
1.	Electron	Electron	If two electrons share a track, discard the soften
2.	Muon	Electron	If they share a track and the muon type is calorimeter-tagged
3.	Electron	Muon	If they share a track with the remaining muon
4.	Small- <i>R</i> jet	Electron	$\Delta R < 0.2$, but step is skipped if jet is <i>b</i> -tagged and $p_{\rm T}(e) < 100 {\rm GeV}$
5.	Electron	Small-R jet	$\Delta R < 0.4$
6.	Small- <i>R</i> jet	Muon	$\Delta R < 0.2$, number of tracks associated to the j $p_{\rm T}(\mu)/p_{\rm T}(j) > 0.5$ and $p_{\rm T}(\mu)/\sum p_{\rm T}({\rm trk}) > 0.5$
7.	Muon	Small- <i>R</i> jet	$\Delta R < 0.4$

Heavy right handed W_R and

Variable	rSRSS2e	rSRSS2mu
Number of electrons	2	0
Number of muons	0	2
Lepton charge	sam	e sign
Leading lepton $p_{\rm T}$ [GeV]		> 4
Dilepton mass $m_{\ell\ell}$ [GeV]		> 4(
$\Delta R_{\ell\ell}$	<	3.9
Number of small- <i>R</i> jets with $p_{\rm T} > 100 \text{ GeV}$		≥ 2
Number of <i>b</i> -tagged jets		0
Dijet mass m _{jj} [GeV]		> 11
$h_{\rm T} \equiv p_{\rm T}(\ell_1) + p_{\rm T}(\ell_2) + p_{\rm T}(j_1) + p_{\rm T}(j_2) \text{ [GeV]}$		> 40

N _R - Signal r	egions
---------------------------	--------

rSROS2e	rSROS2mu
2	0
0	2
oppos	site sign
-0	
00	
2	

- 10
- $\frac{10}{00}$

Region	bSR1e	bSR2e	bS]
	(higher Δm)	(lower Δm)	
Number of large- <i>R</i> jets		1	
Number of electrons	1	2	
Number of muons	0	0	
Leading lepton $p_{\rm T}$ [GeV]		> 200	
$E_{\rm T}^{\rm miss}$ [GeV]	< 2	200	
$ \cos \theta $	> 0.7		
$\Delta \phi_{J,\ell_1}$		> 2.0	
$\Delta \eta_{J,\ell_1}$	< 2.0		
Dilepton $p_{\rm T}$ (GeV)			>
Dilepton mass $m_{\ell\ell}$ [GeV]		> 20	00
Number of <i>b</i> -tagged small- <i>R</i> jets		0	

EXPERIMENT

Heavy right handed W_R and N_R - fits in resolved SRs

arXiv:2304.09553

Heavy right handed W_R and N_R - fits in boosted SRs (and CR)

0.8 0.6

2

3

4

5

(CÉRN)

Heavy right handed W_R and N_R - Uncertainties

<u>arXiv:2304.09553</u>

	Indi
	шШ
	ШП
	IIIII
	ulu.
bSR2mu	(חומ מחצ)

Heavy right handed W_R and N_R - event yields (resolved)

Resolved channel: fit results in signal regions					
# of events	OS ee OS $\mu\mu$		SS ee	SS µµ	
Observed in data	426	435	44	10	
Total background	414 ± 15	451 ± 13	33.4 ± 2.8	9.6 ± 1.4	
WW/ZZ	35 ± 10	43 ± 11	1.53 ± 0.41	0.18 ± 0.05	
WZ/SS WW	10.9 ± 1.6	6.82 ± 0.95	9.8 ± 1.5	8.3 ± 1.3	
Z+jets OS	191 ± 12	217 ± 11			
Z+jets SS			8.4 ± 2.7		
$t\bar{t}$	151 ± 14	164 ± 15	4.0 ± 1.2		
fakes	9.95 ± 0.60	1.36 ± 0.36	7.6 ± 1.3	0.30 ± 0.07	
single top	13.6 ± 1.3	16.2 ± 1.0	1.07 ± 0.32		
rare top	2.45 ± 0.15	2.41 ± 0.16	0.87 ± 0.07	0.83 ± 0.11	
multiboson	0.29 ± 0.02		0.13 ± 0.01		

Heavy right handed W_R and N_R - event yields (boosted, 1e, 2e)

Boosted channel: fit results in 1e regions						
# of events	bCRLow1e	bCRy1e	bVR1e	bSR1e 1 st bin	bSR1e 2 nd bin	
Observed in data	7988	4611	239	10	0	
Total background	7983 ± 90	4611 ± 68	249 ± 35	11.9 ± 3.0	0.81 ± 0.25	
W+jets γ +jets dijet Z+jets diboson $t\bar{t}$	5850 ± 160 279 ± 52 89 ± 54 1350 ± 110 310 ± 160 59 ± 38	$1500 \pm 120 \\ 1370 \pm 160 \\ 1102 \pm 39 \\ 483 \pm 39 \\ 88 \pm 44 \\ 53 \pm 33$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$5.6 \pm 2.7 \\ 2.03 \pm 0.52 \\ 2.20 \pm 0.75 \\ 1.12 \pm 0.46 \\ 0.67 \pm 0.42 \\ 0.18 \pm 0.11$	$\begin{array}{r} 0.2 \pm 0.2 \\ 0.21 \pm 0.09 \\ 0.24 \pm 0.12 \end{array}$ $0.06 \pm 0.04 \end{array}$	
Single top	46 ± 29	18 ± 11	2.0 ± 2.0	$0.10 \stackrel{+0.17}{_{-0.10}}$		

	Boosted channe	el: fit results in 2	2e regions	
# of events	bCRZ2e	bVR2e	bSR2e 1 st bin	b 2 ⁿ
Observed in data	751	39	3	
Total background	752 ± 28	43.4 ± 7.4	3.5 ± 1.2	0.31
Z+jets	622 ± 51	34.8 ± 7.6	2.6 ± 1.2	0.27
$t\bar{t}$	29 ± 18	0.95 ± 0.51	0.24 ± 0.16	
W+jets	17.8 ± 8.9	2.1 ± 1.1	0.20 ± 0.11	
single top	8.4 ± 4.9	$0.21 \stackrel{+0.30}{_{-0.21}}$		
γ +jets	3.1 ± 1.5	0.80 ± 0.41		
diboson	71 ± 35	4.3 ± 2.1	0.33 ± 0.18	
dijet		0.22 ± 0.12		

Heavy right handed W_R and N_R - event yields (boosted, 2μ)

Boosted channel: fit results in 2μ regions						
# of events	bCRZ2mu	bCRZ2mu bVR2mu		bSR2mu 2 nd bin		
Observed in the data	950	46	2	0		
Total background	950 ± 31	54 ±11	4.4 ± 1.9	0.82 ± 0.61		
Z+jets diboson	640 ± 100 108 ± 54	38 ± 12	3.2 ± 1.9	0.63 ± 0.59		
W+jets	$108 \pm 54 \\ 98 \pm 52$	6.7 ± 3.4 4.7 ± 2.9	0.70 ± 0.40 0.21 ± 0.21	0.08 ± 0.07 0.10 ± 0.10		
$t\bar{t}$ single ton	78 ± 46 20 + 12	3.8 ± 2.2 0.88 + 0.56	0.28 + 0.28			
dijet	0.94 ± 0.51	0.00 ± 0.00 0.17 ± 0.15				

Heavy neutrino via top production backup

Heavy neutrino via top production - other two BDT input variables

arXiv:2408.05000

Heavy neutrino via top production - high mass BDT output ee

Heavy neutrino via top production - high mass BDT output $\mu\mu$

40

Heavy neutrino via top production - low mass BDT output ee

Heavy neutrino via top production - low mass BDT output $\mu\mu$

Heavy neutrino via top production - BDT output $\tau\tau$ interpretation

CERN

Heavy neutrino via top production - event yields and exclusions

	Separa	ate fits	Combi	Combined fit										
	SR ee	SR $\mu\mu$	SR ee	SR $\mu\mu$										
$t\bar{t}$ decay e $t\bar{t}$ O-flip	15 ± 6 1.4 ± 0.9	_	15 ± 7 1.3 ± 0.8		<i>m_N</i> [GeV]	15	25	35	40	45	50	55	60	70
$t\bar{t} \gamma$ -conv $t\bar{t} decay \mu$	6 ± 4	- 80+32	5 ± 4	- 84+30	Exp. $\sigma_{e,N}$ [fb] Obs. $\sigma_{e,N}$ [fb]	21 26	9.8 12	7.3 8.2	6.9 7.8	6.9 10	6.7 9.7	7.2 10	8.5 12	18 26
$t\bar{t}W$ $t\bar{t}Z$	10.4 ± 2.6 5 2 ± 1 1	18 ± 5 56 ± 11	10.4 ± 2.6	19 ± 4 55 ± 11	Exp. $\sigma_{\mu,N}$ [fb] Obs. $\sigma_{\mu,N}$ [fb]	9.3 7.5	5.0 3.9	3.7 2.8	3.5 2.6	3.2 3.2	3.1 3.1	3.2 3.3	4.0 4.2	8.2 8.3
tt tt VEW	5.2 ± 1.1 7.6 ± 1.3 2.4 ± 0.0	3.0 ± 1.1 11.4 ± 1.9 1.0 ± 1.5	5.0 ± 1.1 7.5 ± 1.3 2.2 ± 0.8	3.3 ± 1.1 11.2 ± 1.8 1.5 ± 1.2	Exp. $\sigma_{\tau,N}$ [pb] Obs. $\sigma_{\tau,N}$ [pb]	8.9 13	2.6 3.6	2.1 2.7	1.7 2.3	1.8 2.5	1.8 2.2	2.0 3.2	3.7 5.5	7.0 7.3
V E W Top other	2.4 ± 0.9 5.4 ± 2.2	1.9 ± 1.3 11 ± 4	2.3 ± 0.8 5.1 ± 2.2	1.3 ± 1.2 11 ± 4										
Total prediction	52 ± 6	56 ± 4	52 ± 6	56 ± 4										
Data	52	51	52	51										

Displaced HNL search backup

Displaced HNL - Displaced vertex reconstruction efficiency

arXiv:2503.16213

Displaced HNL - Signal Region selections

•	 Pre-selection 	Selection	
		Trigger	
		Prompt lepton selection Prompt lepton TTVA Prompt lepton isolation	Trigg
		Displaced vertex	
		Displaced tracks p_T Displaced-leptons ID WP DV track \Leftrightarrow lepton match ΔR selection	
		Cosmic veto Z-boson-mass veto K_S^0 veto	Same
		J/ψ veto Material map veto	<i>ee</i> , μ
		DV discriminant variable	

arXiv:2503.16213

Leptonic

Semi-leptonic

Lowest unprescaled single-lepton triggers, $p_{\rm T} > 20 - 26 \,{\rm GeV}$

ger matched electron/muon, passing Medium ID WP, with $p_T > 27$ GeV $d_{0,\text{sig}} < 5(3)$ for electrons (muons), $|z_0 \sin \theta| < 0.5$ mm Loose_VarRad (PFlowLoose_VarRad) for electron (muon)

Displaced HNL - Postfit distributions in HF control regions

Displaced HNL - Postfit distributions in HF control regions

Displaced HNL - Postfit distributions in signal regions

(CERN)

Displaced HNL - transfer factors and event yields

Transfer factor values											
	$\mu - \ell \ell$	$e - \ell \ell$	μ	$-\mu\pi$	$e-\mu$	π	μ –	$e\pi$	<i>e</i> –	$e\pi$	
	$0.009^{+0.09}_{-0.009}$	0.12 ± 0.08	0.74	± 0.13	0.75 ± 0).20	0.32 ±	- 0.07	0.41 =	E 0.07	
Signal region	$\mu - \ell \ell$	$e - \ell \ell$		Signal	region	μ-	- μπ	μ-	- еπ	$e - \mu \pi$	e-e
Heavy flavour	10.6 ± 1.5	12.5 ± 1.7	,	Heavy	flavour	8.1	± 1.3	11.7	± 1.5	6.5 ± 1.3	7.4 ± 1
Fakes	1.1 ± 1.5	5.2 ± 2.8		Fakes		20	± 4	10.5	± 2.8	15 ± 4	$15 \pm$
Total bkg	11.7 ± 2.1	17.6 ± 2.9)	Total b	okg	28	± 4	22.1	± 2.9	22 ± 4	22.5 ±
Observed data	15	25		Obser	ved data]	8	1	5	17	16

Displaced HNL - systematic uncertainties

Systematic	SR $\mu - \ell \ell$	SR $e - \ell \ell$	SR $\mu - \mu \pi$	SR $\mu - e\pi$	SR $e - \mu \pi$	SR $e - e\pi$
Electrons	0.2 %	6 %	_	0.8 %	7 %	6 %
Muons	5 %	2 %	5 %	4 %	1 %	
Flavour tagging	0.5 %	0.7 %	0.2 %	0.3 %	0.6 %	0.2 %
Pileup reweighting	2 %	2 %	2 %	0.5 %	0.2 %	1 %
Background modelling	12 %	10 %	10 %	9 %	13 %	14 %
SR template building	8 %	8 %	7 %	9 %	15 %	10 %
MC statistics	1.3 %	1.3 %	0.5 %	0.1 %	0.9 %	0.3 %
HF floating normalisation	13 %	13 %	13 %	13 %	13 %	13 %
Total	14 %	14 %	16 %	13 %	20 %	15 %

Displaced HNL - region definitions

	Leptonic channels	Semi-leptonic channels
Signal Region	40 < m _{ℓℓℓ} < 90 GeV 2 isolated displaced leptons b-jet veto	$70 < m_{\ell\ell\pi} < 90 \text{ GeV}$ 1 isolated displaced lepton b-jet veto
Heavy Flavour CR	$40 < m_{\ell\ell\ell} < 90 \text{ GeV}$ $\geq 1 \text{ non-isolated displaced lepton}$ $\geq 1 \text{ b-tagged jet}$	$40 < m_{\ell\ell\pi} < 90 \text{ GeV}$ 1 non-isolated displaced lepton $\ge 1 \text{ b-tagged jet}$
Sideband CR	low $m_{\ell\ell\ell}$ region: $m_{\ell\ell\ell} < 40$ GeV high $m_{\ell\ell\ell}$ region: $m_{\ell\ell\ell} > 90$ GeV	low $m_{\ell\ell\pi}$ region: $m_{\ell\ell\pi} < 70$ GeV high $m_{\ell\ell\pi}$ region: $m_{\ell\ell\pi} > 90$ GeV
Relaxed Sideband CR	low $m_{\ell\ell\ell}$ region: $m_{\ell\ell\ell} < 40$ GeV high $m_{\ell\ell\ell}$ region: $m_{\ell\ell\ell} > 90$ GeV no displaced lepton isolation requirement	low $m_{\ell\ell\pi}$ region: $m_{\ell\ell\pi} < 70$ GeV high $m_{\ell\ell\pi}$ region: $m_{\ell\ell\pi} > 90$ GeV no displaced lepton isolation requirement

<u>arXiv:2503.16213</u>

Prompt HNL search

- Type-I seesaw mechanism adding HNLs
- Prompt analysis, considers HNL of $5 < m_N < 50$ GeV
 - LNV only, single flavor mixing only
 - HNL decaying to eu, ue
 - 3L signature with two same-sign, same-flavor leptons
 - Originally published in combination with displaced search, overall samples generated with
 - m_N = 4.5, 5, 7.5, 10, 12.5, 15, 20, 30, 50 GeV
 - $T_N = 0.001, 0.01, 0.1, 1, 10, 100 \text{ mm}$

- Events selected with di-muon or single electron triggers
 - Reconstructed leptons required to be trigger matched
- Main backgrounds diboson, triboson and ttV
- Also expect backgrounds from misreconstructed leptons
- Fit performed in three control regions and a signal region
- SR is defined by selecting events 0) Same-charge same-flavour leptons 40 < m_{III} < 90 GeV A b-jet veto E^{Tmiss} < 60 GeV
- CRs invert criteria 1-3

arXiv:1905.09787

Muon channel	Electron channel			
exactly $\mu^{\pm}\mu^{\pm}e^{\mp}$ signature	exactly $e^{\pm}e^{\pm}\mu^{\mp}$ signature			
$p_{\rm T}(\mu) > 4 {\rm GeV}$ $p_{\rm T}(e) > 7 {\rm GeV} \ (2015), 4.5 {\rm GeV} \ (2016)$				
leading muon $p_{\rm T} > 23 {\rm GeV}$ subleading muon $p_{\rm T} > 14 {\rm GeV}$	leading electron $p_T > 27 \text{ GeV}$ subleading electron $p_T > 10 \text{ GeV}$ m(e, e) < 78 GeV			
$40 < m(\ell, \ell, \ell') < 90 \text{ GeV}$ <i>b</i> -jet veto $E_{\text{T}}^{\text{miss}} < 60 \text{ GeV}$				

- Events selected with di-muon or single
 - Reconstructed leptons required to be trigger matched
- Main backgrounds diboson, triboson and ttV
- Also expect backgrounds from misreconstructed leptons
- Fit performed in three control regions and a signal region
- SR is defined by selecting events 0) Same-charge same-flavour leptons 40 < m_{III} < 90 GeV A b-jet veto $E_T^{miss} < 60 \text{ GeV}$
- CRs invert criteria 1-3
- Fit variable is p_T of third lepton

arXiv:1905.09787

electron	triggers
----------	----------

Muon channel	Electron channel			
exactly $\mu^{\pm}\mu^{\pm}e^{\mp}$ signature	exactly $e^{\pm}e^{\pm}\mu^{\mp}$ signature			
$p_{\rm T}(\mu) > p_{\rm T}(e) > 7 { m GeV} \ (201)$	> 4 GeV 15), 4.5 GeV (2016)			
leading muon $p_{\rm T} > 23 {\rm GeV}$ subleading muon $p_{\rm T} > 14 {\rm GeV}$	leading electron $p_T > 27 \text{ GeV}$ subleading electron $p_T > 10 \text{ GeV}$ m(e, e) < 78 GeV			
$40 < m(\ell, \ell, \ell') < 90 \text{GeV}$ b-jet veto $E_{\text{T}}^{\text{miss}} < 60 \text{GeV}$				

arXiv:1905.09787

CERN

*partial Run 2 result

- No excess observed limits set at 95% CL
- Limits for prompt search are straight lines, limits from attached displace search are closed loops
- In mass range 20–30 GeV, regions of $|U_{\mu}|^2$ and $|U_{e}|^2$ above 1.4 × 10⁻⁵ are excluded

