Using $W \rightarrow \ell \nu_{\ell}$ Processes to Probe Sterile Neutrinos at Colliders New- ν Physics: From Colliders to Cosmology 10th April 2025

Sam Bates and Chris Hays, Oxford University Rodrigo Alonso and Michael Spannowsky, Durham University Chris Pollard, Warwick University

1

Overview What I'll cover:

- The model
- Effect of $W \rightarrow eN$ on W-boson mass
- Angular observables' sensitivity to sterile neutrinos

Formalism

- We work in vSMEFT.
 - Operators contributing to $W \rightarrow Ne$: $\Delta \mathcal{L} = \frac{c_{LNH}^{i}}{\Lambda^2} \bar{L}_i \nu_R \tilde{H} H^{\dagger} H + \frac{c_{HNe}^{i}}{\Lambda^2} \bar{\nu}_I$
 - kinematics of the W decays

 $\Gamma(W -$

arXiv:1909.04665

$$\bar{\nu}_R \gamma^\mu e_{iR} H^\dagger i D_\mu H + \frac{c_{NW}^i}{\Lambda^2} \bar{L}_i \sigma^{\mu\nu} \nu_R \sigma_I \tilde{W}^I_{\mu\nu},$$

• c_{LNH}^{i} and c_{NW}^{i} give rise to parity conserving interactions, while c_{HNe}^{i} gives rise to a parity-violating V+A interaction - only this operator changes the

• Thus we assume only $c_{HNe}^{\iota} \neq 0$ which gives rise to a W decay of width:

$$\stackrel{}{} \rightarrow e\nu_R) = \frac{m_w^3 v^2}{48\pi \Lambda^4} (c_{HNe}^e)^2$$

Motivation **W** Mass Discrepancy

- Most precise W mass measurement to date much higher than other measurements
- LHC measurements closer to EW SM prediction

CMS

Electroweak fit PRD 110 (2024) 030001 LEP combination Phys. Rep. 532 (2013) 119 PRL 108 (2012) 151804 Science 376 (2022) 6589 LHCb JHEP 01 (2022) 036 ATLAS arXiv:2403.15085 CMS This work

2412.13872

W Mass Measurement at Hadron Colliders

- W-mass measured in $W \to \ell \nu_\ell$ processes at colliders
- Observables used are p_T^{ℓ} , p_T^{miss} and m_T , where p_T^{miss} is an approximation of the neutrino momentum
 - Defined by $\vec{p}_T^{\text{miss}} = -(\vec{u}_T + \vec{p}_T^{\ell})$ where the recoil \vec{u}_T is the vector sum of the transverse energy of all other deposits in calorimeters
- Distributions of p_T^{ℓ} , p_T^{miss} have Jacobian endpoints at m/2 while m_T drops off at m
 - *m* is invariant mass of charged lepton-neutrino system.

W Mass Measurement at Hadron Colliders

• Invariant mass m related to m_W via the **Breit-Wigner resonance**

$$\frac{d\sigma}{dm} \propto \frac{m^2}{(m^2 - m_W^2)^2 + m^4 \Gamma_W^2}$$

 Simulate expected final state distributions for many m_{W} and then fit to experimental data using χ^2 test

- $x_u > x_d \Rightarrow W$ boosted in direction of u or \overline{u}
- \Rightarrow charged lepton more boosted in decays to RHN than SM decays

 $\Rightarrow \nu_R$ decays must be more transverse to enter detector m_W

- \Rightarrow W transverse decays lead to a harder p_T spectrum, leading to a higher

- Valence quarks higher $p_7 \Rightarrow$ W boosted in direction of valence quark
- \Rightarrow in RHN decays, charged lepton

 \Rightarrow in ν_R decays, ν_R decays more transverse to enter detector for W^+ less transverse to enter detector for $W^ \Rightarrow$ W mass artificially raised in W^+ decays, artificially lowered in W^- decays

more boosted in W^+ case less boosted in W^- case

Motivation

9

Event Generation

• Given our assumptions, neutrino decays with width

$$\Gamma_{\nu_R} = \frac{m_N^5}{(2\pi)^3} \frac{G_F^2}{192} \frac{v^4 \sum_i (c_{HN}^i)}{\Lambda^4}$$

- Standard W selection requires ν_R to decay outside detector
 - of typical detector ($\gamma c \tau \approx 200 \text{m}$)
- We find existing W-boson measurements are sensitive to $c_{HNe}/\Lambda^2 \approx 0.1/v^2$ and masses $m_N \lesssim 1 \text{ GeV}$.

 $_{Ve})^2$

• With Λ at the lower bound of v = 246 GeV and c_{HNe}^{ι} of $\mathcal{O}(1)$ we find $m_N \lesssim 100 \,\mathrm{MeV}$ for almost all events to decay outside fiducial volume

Results CDF Mass Fit

- Simulated at CDF, 1.96TeV
- Likelihood fit for m_W gives $|c_{HNe}| = 1.2 \pm 0.2$ to account for CDF theory-experiment discrepancy of $m_{W,\text{CDF}} - m_{W,\text{SM}} = 76 \text{ MeV},$ $(\Lambda = v)$

Results ATLAS Mass Fits

 Simulated at ATLAS, 7TeV: compared MC to ATLAS measurement

•
$$m_{W^+} - m_{W^-} = -29.2 \pm 28.0 \,\mathrm{MeV}$$

• Fit for p_T^{ℓ} , p_T^{miss} and m_T in ranges used in ATLAS measurements

Eur.Phys.J.C 78 (2018) 2, 110

Results ATLAS Mass Fits			Joir 2.00	
			· · · ·	
•	Best constraint given by p_T^ℓ		1.50 -	
	fit to $m_{W^+} - m_{W^-}$, which		1.25 -	
	corresponds to $ c_{HNe} v^2/\Lambda^2 < 0.13$ at	- $\Delta \ln \mathcal{L}$	1.00 -	
	68% CL		0.75 -	
•	Additional constraints from cross-sections are small.		0.50 -	
			0.25 -	

13

Results CMS Mass Fits

- Compare to 2024 CMS measurement
- Equivalent value at CMS is $m_{W^+} m_{W^-} = 57 \pm 30.3 \text{ MeV}$
 - Corresponds to $|c_{HNe}|v^2/\Lambda^2 = 0.28 \pm 0.09$

- Combining ATLAS and CMS gives $|c_{HNe}| \in [0, 0.27], 95\% \text{ CL}$ assuming $\Lambda = v$

2412.13872

14

Angular Observables (CDF)

- An ideal observable for detecting the difference between the SM and BSM decays would be $\cos \theta_{CS}$
- θ_{CS} is the final angle of one of the leptons in the Collins-Soper frame - a proxy for the W rest frame.
- However, our lack of knowledge of p_Z of the W means we may only reconstruct $\cos \theta_{CS}$ up to a sign.

Angular Observables (CDF)

- After reconstruction the stark difference between these distributions goes away, as we can only plot $|\cos\theta_{CS}|$.
- e^+e^- measurements would allow full reconstruction.

Angular Observables (Atlas)

- An alternative reference frame is the helicity frame, a different proxy for the W rest frame corresponding to a rotation of axes, in which we define $\cos \theta_H$ in a similar manner to the CS frame.
- Although this is a different frame, the principles which motivated the use of the CS frame still apply.

A Sparrow (2012), PhD thesis; arXiv:1203.2165

Angular Observables (Atlas)

$$L_p = \frac{\vec{p}_T^{\ell} \cdot \vec{p}_T^W}{|\vec{p}_T^W|^2}$$

- quantities.
 - Can be shown

high $p_{_{T}}^{W}$

A Sparrow (2012), PhD thesis

• There is a well documented variable, L_p , such that $2L_p - 1$ is highly correlated to $\cos \theta_H$ at high p_T^W .

• This allows us to observe the decay angle in the W rest frame at high p_T^W using only transverse, lab frame

in that
$$\cos \theta_H = \frac{2 |\vec{p}_\ell| - E_W}{|\vec{p}_W|} \approx 2L_p - 1$$
 a

at

Angular Observables (Atlas) W+, SM

Angular Observables (Atlas) W+, SM

Angular Observables (Atlas) Sensitivity

- Despite the looser correlation, the highest sensitivity is achieved for $p_T^W > 50 \,\mathrm{GeV}$, which gives sensitivities of (for $\Lambda = v$)
 - $c_{HNe} = 0.090 (0.072)$ for $W^-(W^+)$ at 95% CL
- Sensitivities are calculated by statistical uncertainty given by fitting SM pseudodata to SM+BSM simulations for different values of µ at integrated luminosity of 4.7 fb⁻¹.

Summary

- New constraints on sterile neutrinos from m_W measurements
 - Sensitivity to parity violating V+A interactions caused by C_{HNP} Wilson coefficient
 - Cases where standard W-boson selection may be employed
 - Masses $\sim MeV$ up to $\approx 1 \, GeV$
 - Could obtain better sensitivity by directly fitting to W-mass data
- Angular variables like $\cos \theta_H$ can hold significant sensitivity

Formalism vSMEFT

$$\overline{I}_{i}\tilde{H}N + rac{1}{2}m_{N}\overline{N^{c}}N + ext{h.c.}
ight],$$

Mass Measurement Fits

as in m_W measurements

$$\frac{\left(m^{2}-m_{W}^{2}\right)^{2}+m^{4}\Gamma_{W}^{2}/m_{W}^{2}}{\left(m^{2}-m_{W}^{ref^{2}}\right)^{2}+m^{4}\Gamma_{W}^{2}/m_{W}^{ref^{2}}}$$

• We performed a likelihood fit, reweighting m_T , p_T^{ℓ} and p_T^{miss} by a Breit-Wigner

• Where m_W is a candidate mass, and $m_W^{ref} = 79.824 \,\text{MeV}$ is the SM value.

Results **CDF PDF Reweighting**

- Lepton Asymmetry affected by introduction of right-handed neutrino, which is used to set PDFs at CDF.
- Estimated impact of this by reweighting SM signal in order for A to match that of BSM model with signal strength μ .

 $\mathcal{A}(\eta_{\ell}) \equiv \frac{dN^+/d\eta_{\ell} - dN^-/d\eta_{\ell}}{dN^+/d\eta_{\ell} + dN^-/d\eta_{\ell}}$

Results CDF PDF Reweighting

• We find after reweighting, effect of sterile neutrinos on W mass reduced by $\sim 30\%$.

27