New- ν searches with IceCube

New- ν Physics: From Colliders to Cosmology

Ivan Martinez Soler

High-Energy Neutrinos

We focus on the high-energy part of the flux, which is very small and therefore requires large detectors

Ivan Martinez-Soler (IPPP)

Neutrino energy (eV)

IceCube

IceCube is a neutrino telescope in the south pole.

- ~ 1 km³ ice Cherenkov
- Contains 5160 DOMs
- 86 strings
- Approximately ~2 km below the surface
- IceTop
- The main background is muons from cosmic-rays.
- Three-different event topologies

Ivan Martinez-Soler (IPPP)

Double-Bangs

Atmospheric neutrinos

The low-energy flux reaching neutrino telescopes is primarily dominated by the atmospheric neutrinos

Atmospheric neutrinos are created in the collision of cosmic rays with the atmospheric nuclei

Flavor Oscillations

Measuring the **flavor composition** of the flux passing through the Earth enables the determination of neutrino oscillation parameters

Ivan Martinez-Soler (IPPP)

Flavor Oscillations: Mass Ordering

Combining IC measurements with other oscillation experiments we get sensitivity over unconstrained parameters

- Combining IC24+Reactors, we get a preference for NO of $\Delta\chi^2 \sim 4.5$
- Super-Kamiokande alone shows a preference for NO of $\Delta\chi^2 \sim 4.5$
- Combining IC+SK+global fit results in a preference for NO of $\Delta\chi^2\sim 6.1$

In case there is new dissipative effects, the flavor oscillation get dumps

Considering unitarity and energy conservation

$$P_{\alpha\beta} = \sum_{i,j} U_{\alpha i} U^*_{\beta j} U^*_{\alpha j} U_{\beta i} e^{-\gamma_{ij}L + \frac{i\Delta m_{ij}^2 L}{2E}}$$

Ivan Martinez-Soler (IPPP)

Quantum Decoherence

Quantum Decoherence

By studying how the dissipative effects affect the propagation of atmospheric neutrinos, we analyzed the IceCube data

Ivan Martinez-Soler (IPPP)

P Coloma, J López-Pavón, IMS, H. Nunokawa, EPJC 78

Heavy sterile neutrino

To explain the origin of the neutrino masses, the SM can be considered as a low energy effective model

• At d=5, we have the Weinberg operator

Type-I seesaw:

- Introduce right-handed neutrinos
- Allow L number violation

• For
$$M_R > > v$$

$$m_{\nu} \sim \frac{Y_{\nu}^{\dagger} Y_{\nu} \nu^2}{M_R} \qquad m_N \approx M_R + \mathcal{O}\left(m_{\nu}\right)$$

Ivan Martinez-Soler (IPPP)

See Steve King, Thomas Schwetz-Manglod, Richard Ruiz, Arsenii Titov, Jacobo López-Pavón

$$\mathcal{L}_{mass}^{\nu} \supset Y_{\nu} \bar{L}_L \tilde{\phi} N_R + \frac{1}{2} M_R \bar{N}_R^c N_R + h.c.$$

- Neutrino masses can be smaller than other fermion masses
- Heavy neutrinos can hardly be tested
- There are other scenarios where the Majorana mass can take smaller values

Heavy sterile neutrino

In the presence of N_R , the flavor states can be written as a superposition of massive states as

$$\nu_{\alpha L} = \sum U_{\alpha m} \nu_{n}$$

We can look for HNLs using double bang signals

$$\nu + N \rightarrow N_4 + \text{shower}$$

 $N_4 \rightarrow \nu + \text{signal}$

P. Coloma, P.A.N. Machado, IMS, I.M.Shoemaker, PRL 119 (2017)

Transition Magnetic Moment

Active and HNL states may be coupled via a transition dipole moment

We are going to consider that both the HNL production and decay are given by the dipole moments ($N \rightarrow \nu_i \gamma$)

$$\Gamma = \frac{\mu_{\nu}^2 M_4^3}{4\pi}$$

P. Coloma, P.A.N. Machado, IMS, I.M.Shoemaker, PRL119 (2017) M. Atkinson, P. Coloma, IMS, Noemi Rocco, I.M. Shoemaker, JHEP 04 (2022) 174

Light-Sterile Neutrinos

eV sterile neutrinos lead to a disappearance in the atmospheric muon neutrino flux at the TeV scale

Ivan Martinez-Soler (IPPP)

Abbasi et al. (IceCube), arXiv: 2405.08070

Astrophysical neutrinos

At energies above ~10 TeV, the flux reaching the Neutrino Telescopes is dominated by astrophysical sources.

Ivan Martinez-Soler (IPPP)

R. Abbasi, et al. (IceCube), Astrophys.J. 928 (2022) 1, 50

Through-going Muons

IceCube has measured the astrophysical muon-neutrino flux

- It includes both starting and through-going samples.
- The measurement is dominated by ν_{μ} CC, with a small contribution from ν_{τ} CC

- To minimize the background, only up-going events have been considered ($\theta_{zenith} > 85^\circ$)
- The energy range considered is 15 TeV to 5 PeV

Ivan Martinez-Soler (IPPP)

R. Abbasi, et al. (IceCube), Astrophys.J. 928 (2022) 1, 50

Electron and Tau Neutrinos

IceCube has searched for astrophysical events using cascades

- This analysis is dominated by ν_{ρ} and ν_{τ}
- The astrophysical neutrino flux at Earth assumes an equal number of neutrinos and anti-neutrinos, with an equal flavor composition
- The energy range considered spans from 16 TeV to 2.6 PeV
- Cascades from all the sky are included. \bullet

M.G. Aartsen, et al. (IceCube), PRL 125 (2020)

Combined Analysis

Assuming the astrophysical flux follows a power law

$$\phi_{\nu}(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-\gamma}$$

Ivan Martinez-Soler (IPPP)

Tracks and cascades represent two independent data samples that can be combined into a global determination of the astrophysical flux

R. Naab, E. Ganster and Z. Zhang (IceCube), PoS(ICRC2023) 1064

Where Do Neutrinos Come From?

Galactic Plane

- The highest neutrino production in the galaxy is expected near the Galactic Center
- Three models of Galactic diffuse neutrino emission have been considered, differing in energy spectrum and emission location.

Ivan Martinez-Soler (IPPP)

IceCube, Science 380 (2023) 1338

Galactic Plane

- Neutrino emission from the Galactic Plane is found at 4.5σ
- The flux from the galactic plane will contribute between 6-13% to the diffuse flux at 30TeV

IceCube, Science 380 (2023) 1338

- The analysis is optimized for searching tracks from the Northern Hemisphere
- The analysis assumes a single power law finding a preference for $\gamma = 3.2 \pm 0.2$ and an excess of 79_{-20}^{+22} events
- Most of the events have energies between 1.5TeV and 15TeV

Point Sources

The most significant source observed by IceCube is **NGC 1068** with a significance of 4.2σ

Beyond NGC 1068, IceCube has identified more candidate sources

$-\log_{10} p$ Source $\hat{\gamma}$ z3.2NGC 1068 7.00.0038 PKS 1424+240 4.03.50.6047TXS 0506+056 3.62.00.3365

The most significant point sources

Ivan Martinez-Soler (IPPP)

These sources contribute no more than $\sim 1\%$ to the total diffuse flux measured.

378, 538 (2022)

Pseudo-Dirac neutrinos

In the scenario where $M_R < < M_D$ the active neutrinos can be written as a superposition of two massive states

$$\nu_{\alpha L} = \frac{1}{\sqrt{2}} U_{\alpha j} (\nu_{js} + i \nu_{ja}) \qquad \qquad m_{ks}^2 = m_k^2 + \frac{1}{2} \delta m_k^2 \\ m_{ka}^2 = m_k^2 - \frac{1}{2} \delta m_k^2$$

Pseudo-Dirac neutrinos

In this analysis, we consider the most significant candidate sources observed by IceCube

A dip in the neutrino spectra of several sources will robustly indicate this scenario.

Carloni, Martinez-Soler, Arguelles, Babu, Bhupal, PRD 109 (2024) L051702

Conclusions

- Neutrino telescopes can provide valuable information about the neutrino properties.
- questions in neutrino physics: the mass ordering.
- Neutrino telescopes have also been able to identify some sources of astrophysical neutrinos.

• By measuring of the atmospheric neutrino flux, **neutrino telescopes** will contribute to some of the open

• Atmospheric neutrinos can also be used to search for **BSM signals**: quantum decoherence, HNLs...

• Considering the most significant point sources, we explored the sensitivity to the pseudo-Dirac scenario, finding that $10^{-21} \text{eV}^2 < \delta m^2 < 10^{-16} \text{eV}^2$ can be explored with more than 3σ significance.

Thanks!