<u>cea</u> irfu

UNIVERSITE PARIS-SACLAY

Indirect HNL searches at ATLAS

Matthias Saimpert (CEA Saclay, IRFU/DPhP, France)

"New- ν Physics: From Colliders to Cosmology"

Durham (UK) - April 10, 2025

HNL production at the LHC

- Heavy Neutral Lepton (HNL)
 - seesaw mechanism
 - zero coupling
 - CP violation

- = heavy, sterile, Majorana neutrino
 - \rightarrow neutrino mass
 - \rightarrow dark matter
 - \rightarrow baryon asymmetry

HNL production at the LHC

The LHC is an **everything** factory

Particle	Produced in 140 ft	o ^{₋1} at √s = 13 TeV
Higgs boson	7.8 million	
Top quark	275 million	
Z boson	8 billion	$(\rightarrow \ell\ell, 270$ million per flavour)
W boson	26 billion	$(\rightarrow \ell \nu, 2.8$ billion per flavour)
Bottom quark	~160 trillion	(significantly reduced by acceptance)
source		

- Heavy Neutral Lepton (HNL)
 - seesaw mechanism
 - zero coupling
 - CP violation

- = heavy, sterile, Majorana neutrino
 - \rightarrow neutrino mass
 - \rightarrow dark matter
 - \rightarrow baryon asymmetry
- At LHC, can be singly produced in the numerous W decays
 - but also in: Z, Higgs, mesons and τ decays

Signal models

HNL predicted in many models \rightarrow benchmarks defined

■ 'Minimal', ex: phenomenological type-I seesaw, → used for direct + indirect searches

- HNLs + mass mixing parameters
- relevant new particles: 1 HNL (typically others set to large mass)
- **relevant parameters:** m_N , $V_{\ell N}$ (typically one flavor considered)

Signal models

HNL predicted in many models \rightarrow benchmarks defined

■ 'Minimal', ex: phenomenological type-I seesaw, → used for direct + indirect searches

- HNLs + mass mixing parameters
- relevant new particles: 1 HNL (typically others set to large mass)
- **relevant parameters:** m_N , $V_{\ell N}$ (typically one flavor considered)
- 'UV complete', ex: left-right symmetric models,
- \rightarrow this afternoon ('Direct Searches' talk)

The ATLAS detector at the LHC

Particle identification

- Recording of LHC proton-proton collisions at \sqrt{s} = 13 TeV
- Very large dataset collected during Run 2 (2015-2018)
 - 139 fb⁻¹ available \rightarrow 7.8M Higgs, 275M top quarks, 8000M Z bosons, ...
- Multi-purpose, high efficiency/acceptance detector

Experimental signatures at ATLAS and CMS (1/2)

'Direct' search at the LHC

- **Final state:** '2 same-sign leptons + 2 jets' or '3 leptons' (if $W \rightarrow \ell \nu$)
- More about this this afternoon ('direct searches' talk)

Experimental signatures at ATLAS and CMS (2/2)

'Indirect' search at the LHC (high m_N)

- Final state is similar: '2 same-sign leptons + 2 jets'
 - but different topology: forward jets (closer to beam axis) well separated in η

Experimental signatures at ATLAS and CMS (2/2)

'Indirect' search at the LHC (high m_N)

Final state is similar: '2 same-sign leptons + 2 jets'

- but different topology: forward jets (closer to beam axis) well separated in η
- **Realization of the** $0\nu\beta\beta$ **process in high-energy proton collisions**
 - irreducible background: same-sign WW scattering

Topic of this talk!

Event display

- Candidate signal event in 2018 data
- 2 same-sign muon + 2 jets
- 2 jets well-separated in η (vector boson fusion topology)

Eur. Phys. J. C 83 (2023) 824

HNL production at the LHC vs m_N for $V_{\ell N}^2=1$

Phys. Rev. D103, 055005 (2021)

- 'Direct' production diagram dominates for m_N < 800 GeV or so
- 'Indirect' production diagram dominates at higher mass
- **But scales as** $V_{\ell N}^4$ (vs $V_{\ell N}^2$ for direct!)

 $\sigma(pp \to \mu^{\pm}\mu^{\pm} + X) \equiv |V_{\mu N}|^4 \times \sigma_0(pp \to \mu^{\pm}\mu^{\pm} + X)$

 Direct production diagram eventually larger at smaller V²_{ℓN}

NO 100

Related ATLAS results

Measurement of same-sign W boson pair production in association with two jets

- full Run 2, JHEP 04 (2024) 026
- Search for heavy Majorana neutrinos in same-sign WW scattering events (μμ)
 - full Run 2, Eur. Phys. J. C 83 (2023) 824
- Search for heavy Majorana neutrinos in same-sign WW scattering events (eμ, ee)
 - full Run 2, Phys. Lett. B 856 (2024) 138865

ATLAS same-sign WW analysis

JHEP 04 (2024) 026

- **Rare, irreducible background** of the HNL search
- Complex interplay of EW production (VBF and non-VBF) and QCD production
- Selection of **2 same-sign leptons**, **2 jets** with $m_{jj} > 500$ GeV and $|\Delta y_{jj} > 2|$
- **Requires** $E_T^{\rm miss} > 30 \text{ GeV}$ (neutrinos) \rightarrow large suppression of any possible HNL signal

WZ background

ssWW SR post-fit (ee)

- **Dominant background:** WZ with 1ℓ out of acceptance
- WZ modeling constrained in 3ℓ control region
 - rest of selection essentially same as SR
- $\mu_{WZii}^{QCD} = 0.67 \pm 0.07$, consistent w/ other ATLAS measurements (1,2)

No W W

WZ background

ssWW SR post-fit (ee)

SRs post-fit for other lepton channels: $\mu\mu$, $e\mu$, μe

W¹W¹ii Int

WZ OCD

GeV

Events/50

Data/SM

500 1000

- **Dominant background:** WZ with 1ℓ out of acceptance
- WZ modeling constrained in 3ℓ control region
 - rest of selection essentially same as SR
- $\mu_{WZii}^{QCD} = 0.67 \pm 0.07$, consistent w/ other ATLAS measurements (1,2)

Background from non-prompt leptons

- 2nd largest background, mostly from tt and W+jets
- 1 lepton not originating from W, Z or (prompt) HNL decays
 - dominated by heavy flavor hadron decays
 - fake electrons also include
 - hadronic jets
 - photon conversions

Background from non-prompt leptons

- 2nd largest background, mostly from tt and W+jets
- 1 lepton not originating from W, Z or (prompt) HNL decays
 - dominated by heavy flavor hadron decays
 - fake electrons also include
 - hadronic jets
 - photon conversions

- Data-driven evaluation (normalisation + shape)
- Based on transfer factors derived in bkg-dominated 1ℓ regions
- Validated in low m_{jj} control region

ATLAS same-sign WW measurements

Overall good agreement with SM

■ µ^{EW+Int+QCD} = 1.16 ± 0.08 (stat) ±0.04 (mod. syst.) ±0.05 (exp. syst.) ±0.02 (lumi.)

Results also available for μ^{EW}_{sig}, differential cross sections measured, EFT fits, H++ search, ...

NV WY

ATLAS searches for heavy Majorana ν in ssWW

μμ: Eur. Phys. J. C 83 (2023) 824

ee, *e*µ: Phys. Lett. B 856 (2024) 138865

- Essentially the ssWW measurement w/ reoptimised cuts for HNL search
 - optimised for Type-I seesaw, but interpreted also using the d=5 Weinberg operator
- Selection of **2 same-sign leptons**, **2 jets** with $m_{jj} > 500$ GeV and $|\Delta y_{jj} > 2|$
 - $\label{eq:mjj} \quad \textbf{\textit{m}}_{jj} > 300 \; \text{GeV} \; \text{and} \; |\Delta y_{jj} > 4| \; \text{for} \; \mu \mu$
- **Requires low** E_{T}^{miss} significance (no neutrino) in $\mu\mu$ and *ee* channels
 - large $\Delta \phi_{e\mu}$ used instead in $e\mu$

ssWW searches: analysis strategy

- Final discriminating variable: subleading lepton p_T
- Main backgrounds: ssWW (EW) and WZ (QCD), constrained in control regions
 - ssWW: requiring large $E_{\rm T}^{\rm miss}$ ($\Delta \phi_{e\mu}$ in $e\mu$) $\rightarrow \mu_{ssWW} \sim 1.15 1.25$
 - **u** WZ: requiring 3ℓ \rightarrow $\mu_{WZ} \sim 0.65 0.9$ all compatible w/ ssWW ATLAS measurement
- Other background: charge flipped electrons (ee) and non-prompt (ee, eµ)
 - estimation similar to ssWW

XX.

ssWW searches: results

- No excess, very good agreement with the post-fit SM predictions
- Final results formulated as exclusion limits in $(m_N, V_{\ell N})$ for Type-I seesaw and on the Wilson coefficient matrix of the Weinberg operator

ssWW searches: exclusion

• Limits set up to $m_N = 20$ TeV but only down to $V_{\ell N}^2 = O(0.1)$

• ee and $\mu\mu$ set limits on single flavour, whereas $e\mu$ sets limits on $|V_{eN}V_{\mu N}^*|$

- Limits on Weinberg operator: $\Lambda/C_5 > 4.9$ TeV ($e\mu$), 3.6 TeV ($\mu\mu$) and 2.5 TeV (ee)
 - which translate to $|m_{e\mu}| <$ 12 GeV, $|m_{\mu\mu}| <$ 17 GeV and $|m_{ee}| <$ 24 GeV
- Limits stat-dominated, selection efficiency dominated by:
 - muon reconstruction at high p_T AND central electron requirement (to reduce the charge flip background)

ATLAS summary plots (electrons & muons)

- **Colliders** currently provide strongest direct constraints for $m_N > m_K$
- Unique sensitivity of ATLAS and CMS for $m_N > m_Z$
 - some analyses still in progress
- LEP sensitivity is / will be exceeded by LHC by the end of Run 3 (electrons and muons)

Summary & Outlook

HNL searched in ATLAS at very high *m_N* **in a new channel** (same-sign WW scattering)

- realization of the $0\nu\beta\beta$ process in high-energy proton collisions
- No excess observed, limits set up to $m_N = 20$ TeV but only down to $V_{\ell N}^2 = O(0.1)$
 - sensitivity limited by data statistics
 - other limiting factors: muon reconstruction efficiency at high p_T and the fact that only central electrons are considered
- These searches will benefit from the additional Run 3 data
- Some interests to explore tau channels

Thank you for your attention

CEA SACLAY 91 191 Gif-sur-Yvette Cedex France matthias.saimpert@cea.fr

Current sensitivity: the LEP1 legacy (Type-I seesaw)

Z. Phys. C 74, 57-71 (1997)

• Search for HNL in $Z \rightarrow N\nu$ decays at LEP1 (stat \sim 3.3M hadronic decays!)

- • Imits only for $m_N < m_Z$ is but apply for mixing to all 3 flavours
- Four decay topologies studied, no excess observed
 - $\nu\nu\bar{\nu}, \nu\ell\bar{\ell}, \nu q\bar{q}, \ell q\bar{q}',$
 - short-lived and long-lived signatures (up to 10m!)

Indirect constraints above the electroweak scale

JHEP08 (2016) 033

$$\begin{split} &\sqrt{2|\eta_{ee}|} < 0.050, \quad \sqrt{2|\eta_{e\mu}|} < 0.026, \\ &\sqrt{2|\eta_{\mu\mu}|} < 0.021, \quad \sqrt{2|\eta_{e\tau}|} < 0.052, \\ &\sqrt{2|\eta_{\tau\tau}|} < 0.075, \quad \sqrt{2|\eta_{\mu\tau}|} < 0.035, \end{split} \qquad \qquad \sqrt{2|\eta_{\alpha\beta}|} = \sum_{i} \sqrt{\Theta_{\alpha i} \Theta_{\beta i}^{*}} \end{split}$$

- Example of global fit with 28 observables (µ and Z decays, CKM unitarity, ...)
- Strong limits above the electroweak scale: mixing < few 10⁻² for all flavors at 95% CL
 - e.g. for 1 HNL mixing only with muons: $|U|^2 < 4 \cdot 10^{-4}$
- However, results are model-dependent
 - limits can be relaxed in more complicated scenarios

NO VAN