LNV and LFV @ FCC and HL-LHC (without ν_R) ν Physics, IPPP, Durham

Richard Ruiz

Institute of Nuclear Physics - Polish Academy of Science (IFJ PAN)

10 April 2025

N A R O D O W E C E N T R U M N A U K I

= nar

this talk:

• summary of HL-LHC + FCC sensitivity to ν mass models \odot

scenarios without ν_R (see talks by S. King, T. Schwetz-Mangold, M. Mitra, & A. Titov!)

many numbers already available from previous ESU/Snowmass ©

- broad review on LNV@Colliders (Front.'17) [1711.02180]
- review for (pseudo)Dirac and Majorana N (JHEP'18) [1812.08750]
- lots of newer works by the community

20' too little time for everything S

A = N A = N = I = 000

the big picture

LNV+LFV@LHC/FCC – vphys@IPPP

・ロト < 団ト < 団ト < 団ト < ロト

Problem: according to the SM, $m_{\nu}=0$. (too few ingredients but data obviously disagree!)

Discovery of neutrino masses \circledast \Rightarrow several open questions:

- ν have mass. What is generating m_{ν} ?
- ν masses are *tiny*. What sets the scale of m_{ν} ?
- m_{ν} are nearly degenerate. What sets the pattern of m_{ν} ?
- ν carry no QCD/QED charge. Are $\nu, \overline{\nu}$ the same (Majorana)?

guidance from theory

LNV+LFV@LHC/FCC – vphys@IPPP

 $m_{\nu} \neq 0 \implies$ new physics must exist

もつか 正明 エル・エリ・エピ・エロ・

R. Ruiz (IFJ PAN

LNV+LFV@LHC/FCC – vphys@IPPP

6 / 37

6 / 37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $m_{\nu} \neq 0$ + renormalizability + gauge inv. \implies new particles

New particles must couple to $\Phi_{\rm SM}$ and L, often inducing non-conservation of lepton number and/or lepton flavor

Theory solution to $m_{\nu} \neq 0$ can be realized in *many* ways!

Minkowski ('77); Yanagida ('79); Glashow & Levy ('80); Gell-Mann et al., ('80); Mohapatra & Senjanović ('82); + many others

collider strategy: infer Majorana nature¹ or mass mechanism of ν from LNV+LFV with new particles

¹ Black Box Theorem: LNV \iff Majorana ν	·	<) 9 (
R. Ruiz (IFJ PAN)	LNV+LFV@LHC/FCC – vphys@IPPP	7 / 37	

²Konetschny and Kummer ('77); Schechter and Valle ('80); Cheng and Li ('80); Lazarides, et al ('81); Mohapatra and Senjanovic ('81)

R. Ruiz (IFJ PAN

LNV+LFV@LHC/FCC – vphys@IPPP

8 / 37

9 / 37

LNV+LFV@LHC/FCC - vphys@IPPP

Hypothesize a scalar $SU(2)_L$ triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{SM}^{\dagger} \hat{\Delta} \cdot \Phi_{SM}^{\dagger} + \text{H.c.} \Big)$$

LNV+LFV@LHC/FCC – ν phys@IPPP 9 / 37

Hypothesize a scalar $SU(2)_L$ triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\langle \hat{\Delta} \rangle = \mathbf{v}_{\Delta} \approx \frac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2} m_{\Delta}^2}$$

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ | Ξ = のへの

Hypothesize a scalar SU(2)_L triplet with lepton number L = -2

$$\hat{\Delta} = \frac{1}{\sqrt{2}} \begin{pmatrix} \Delta^+ & \sqrt{2}\Delta^{++} \\ \sqrt{2}\Delta^0 & -\Delta^+ \end{pmatrix}, \quad \text{with} \quad \mathcal{L}_{\Delta\Phi} \ni \mu_{h\Delta} \Big(\Phi_{\text{SM}}^{\dagger} \hat{\Delta} \cdot \Phi_{\text{SM}}^{\dagger} + \text{H.c.} \Big)$$

The mass scale $\mu_{h\Delta}$ breaks lepton number, and induces $\langle \Delta \rangle \neq 0$:

$$\langle \hat{\Delta} \rangle = \mathbf{v}_{\Delta} \approx \frac{\mu_{h\Delta} v_{\rm EW}^2}{\sqrt{2} m_{\Delta}^2}$$

 \implies left-handed Majorana masses for ν

$$\Delta \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \overline{\mathcal{L}^{c}} \hat{\Delta} \mathcal{L} = -\frac{y_{\Delta}^{ij}}{\sqrt{2}} \begin{pmatrix} \overline{\nu^{jc}} & \overline{\ell^{jc}} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ \mathbf{v}_{\Delta} & 0 \end{pmatrix} \begin{pmatrix} \nu' \\ \ell' \end{pmatrix}$$
$$\ni -\frac{1}{2} \underbrace{\left(\sqrt{2} y_{\Delta}^{ij} \mathbf{v}_{\Delta}\right)}_{=m_{\nu}^{ij}} \overline{\nu^{jc}} \nu^{i}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Few free parameters \implies rich experimental predictions

Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

 Example: △ decay rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

$$\Gamma(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim y_{\Delta}^{ij} \sim (U_{\rm PMNS}^* \tilde{m}_{\nu}^{\rm diag} U_{\rm PMNS}^{\dagger})_{ij}$$

R. Ruiz (IFJ PAN

10 / 37

Type II@HL-LHC

Fuks, Nemevšek, RR [1912.08975]

R. Ruiz (IFJ PAN

LNV+LFV@LHC/FCC – vphys@IPPP

11 / 37

< ∃ ►

Type II@HL-LHC

R. Ruiz (IFJ PA

Type II@FCC-hh

What if $\Delta^{\pm\pm}$, Δ^{\pm} are discovered?

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

13 / 37

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

celebrate! 🙂

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

14 / 37

charged scalars $H^{\pm\pm}$, H^{\pm} are not unique

LNV+LFV@LHC/FCC – vphys@IPPP

LNV+LFV@LHC/FCC – vphys@IPPP

16 / 37

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

◇20~ 戸川 〈 川 〉 〈 川 〉 〈 □ 〉

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

17 / 37

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar $SU(2)_L$ singlets k, h with weak hypercharge $Y = -2, -1 \iff Q_k = -2, Q_h = -1$ with lepton number L = -2

LNV+LFV@LHC/FCC - vphys@IPPP

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Hypothesize two scalar SU(2)_L singlets k, h with weak hypercharge Y = -2, -1 ($\implies Q_k = -2, Q_h = -1$) with lepton number L = -2

$$\mathcal{L}_{\text{ZB}} = \mathcal{L}_{\text{SM}} + (D_{\mu}k)^{\dagger}(D^{\mu}k) + (D_{\mu}h)^{\dagger}(D^{\mu}h) + (\mu \nu hhk^{\dagger} + \text{H.c.})$$

$$\begin{bmatrix} f_{ij} \ \overline{\tilde{L}^{i}}L^{j}h^{\dagger} + g_{ij} \ \overline{(e_{R}^{c})^{i}}e_{R}^{j}k^{\dagger} + \text{H.c.} \end{bmatrix} + \dots$$

$$\overset{h^{-}} \qquad \overset{h^{-}}{\overset{i}} \overset{h^{$$

The mass scale μ_{ll} breaks lepton number, and induces $m_{\nu} \neq 0$:

$$\left(\mathcal{M}_{\nu}^{\text{flavor}}\right)_{ij} = 16\mu_{\mu} f_{ia} m_a g_{ab}^* \mathcal{I}_{ab}(r) m_b f_{jb}.$$

R. Ruiz (IFJ PAN

17 / 37

Few free parameters \implies rich experimental predictions

Nebot, et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

• E.g., $k^{\pm\pm}$, h^{\pm} couplings to leptons encode oscillation physics

NH & IH, $\sin^2(\theta_{23}) < 0.5$

R. Ruiz (IFJ PAN

LNV+LFV@LHC/FCC – vphys@IPPP

18 / 37

Zee-Babu@HL-LHC

R. Ruiz (IFJ PAN

Zee-Babu@FCC-hh

R. Ruiz (IFJ PAN

What if $k^{\pm\pm}$, h^{\pm} are discovered?

: (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

21 / 37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Usual argument: Different gauge quantum numbers \implies different σ

- In principle, this is a good arguement
- ... but difference (1× or 2×) can be absorbed by BR (via LNV coupling)

silver lining

luiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

23 / 37

Guidance from oscillation data

The ratios of $h^{\pm} \rightarrow \ell \nu$ couplings are fixed by oscillation data

- $\bullet \ \nu$ cannot be tagged at the LHC
- LHC only sensitive to sum over $\nu \implies$ inclusive w.r.t. ν !

From flavor-exclusive decay rates:

$$\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell\ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$$

define flavor-inclusive decay rates:

$$\Gamma(h^{\pm} \to e^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to e^{\pm}\nu_{\ell})$$

$$\Gamma(h^{\pm} \to \mu^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm}\nu_{\ell})$$

Guidance from oscillation data

The ratios of $h^{\pm}
ightarrow \ell
u$ couplings are fixed by oscillation data

- u cannot be tagged at the LHC
- LHC only sensitive to sum over $\nu \implies$ inclusive w.r.t. ν !

From flavor-exclusive decay rates:

$$\Gamma(h^{\pm} \to \ell \nu_{\ell}') = \frac{|f_{\ell\ell'}|^2}{4\pi} m_h \left(1 - \frac{m_{\ell}^2}{m_h^2}\right)$$

$$\begin{aligned} \mathcal{R}^{h}_{e\mu} &= \frac{\mathrm{BR}(h^{\pm} \to e^{\pm}\nu_{X})}{\mathrm{BR}(h^{\pm} \to \mu^{\pm}\nu_{X})} \\ &= \frac{|f_{e\mu}|^{2} + |f_{e\tau}|^{2}}{|f_{e\mu}|^{2} + |f_{\mu\tau}|^{2}} = \frac{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + |\frac{f_{e\tau}}{f_{\mu\tau}}|^{2}}{|\frac{f_{e\mu}}{f_{\mu\tau}}|^{2} + 1} \end{aligned}$$

define flavor-inclusive decay rates: $\Gamma(h^{\pm} \to e^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to e^{\pm}\nu_\ell)$ $\Gamma(h^{\pm} \to \mu^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm}\nu_\ell)$ $\Gamma(h^{\pm} \to \mu^{\pm}\nu_X) = \sum_{\ell=e}^{\tau} \Gamma(h^{\pm} \to \mu^{\pm}\nu_\ell)$ $\frac{\nu_{e\mu}}{\nu_{e\mu}} \approx 0.313 \text{ (+smallish unc.)}$ $\frac{\nu_{e\mu}}{\nu_{e\mu}} \approx 0.715 \text{ (+smallish unc.)}$

24 / 37

⁴Foot, et al ('89)

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

25 / 37

Type III Seesaw postulates $SU(2)_L$ letponic triplet (T^+, N^0, T^-)

lots of rich physics Bajc, Senjanovic [hep-ph/0612029]; PF Perez [hep-ph/0702287]; Abada, et al [0707.4058, 0803.0481]; +++

- heavy electron and heavy neutrino carry weak isospin charges
- \implies couples to $W/Z/\gamma$ via gauge charges
- typical decay modes $T^{\pm}, N \rightarrow \ell^{\pm}/\nu + V$

w/ Cai, Han, Li [1711.02180]

Weinberg Operator⁵

 < □ > < ⊡ > < ⊡ > < Ξ</td>
 ≥
 ≤

 LNV+LFV@LHC/FCC - νphys@IPPP
 2

< E ▶ < E ▶ E = つへで P 27 / 37

⁵Weinberg ('79); w/ Fuks, et al PRD('21)[2012.09882]

Weinberg operator at the LHC

In many ways $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$ is the high-energy realization of $0\nu\beta\beta$

First constraints of Weinberg operator ever for $\mu\mu$ [2206.08956; 2305.14931] and $e\mu$ [2403.15016] (new!), and outside nuclear environment for *ee* [2403.15016] (new!)

 $\Lambda/|\mathcal{C}_{\ell\ell'}| \gtrsim 2.5 - 5.6 \,\, {
m TeV} \iff |m_{\ell\ell'}| \lesssim 11 - 24 \,\, {
m GeV}$ for ee, e $\mu, \mu\mu$

The helicity amplitude for the $0\nu\beta\beta$ process $q\overline{q'} \rightarrow \ell_1^+ \ell_2^+ \overline{f} f'$ is

$$\mathcal{M}_{LNV} = J^{\mu}_{f_1 f'_1} J^{\nu}_{f_2 f'_2} \Delta^{W}_{\mu \alpha} \Delta^{W}_{\nu \beta} \underbrace{T^{\alpha \beta}_{LNV} \mathcal{D}(p_{\nu})}_{\mathcal{D}(p_{\nu})}$$

lepton current

29 / 37

Difficult to simulate since Weinberg op. modifies propagator of ν_{ℓ}

modern Monte Carlo tools work in mass basis and do not like the idea of modifying $\langle 0 | \overline{\nu_{\ell'}} \nu_\ell | 0 \rangle$

$$\xrightarrow{\nu_{\ell}(p)} \xrightarrow{\nu_{\ell'}^c(-p)} = \frac{ip'}{p^2} \xrightarrow{-iC_5^{\ell\ell'}v^2} \frac{ip'}{p^2} = \frac{im_{\ell\ell'}}{p^2}$$

Solution: Treat vertex as a particle! Invent unphysical Majorana fermion with (small) mass $m_{\ell\ell}$ that couples to all lepton flavors recovers right behavior!

$$T_{LNV}^{\alpha\beta}\mathcal{D}(p_{\nu}) \propto \gamma^{\alpha} P_{L} \frac{i(p+m_{\ell\ell'})}{p^{2}-m_{\ell\ell'}^{2}} \gamma^{\beta} P_{R} = \gamma^{\alpha} P_{L} \frac{im_{\ell\ell'}}{p^{2}} P_{L} \gamma^{\beta} \times \left[1 + \mathcal{O}\left(\left|\frac{m_{\ell\ell'}^{2}}{p^{2}}\right|\right)\right]$$

Plotted: Normalized production rate $(C_5 = 1)$ vs scale (Λ)

w/ Fuks, Saimpert, et al (PRD'21) [2012.09882]

what is on the horizon?

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

31 / 37

Over past few years, the LHC has been established as an intense (laboratory) source of TeV-scale neutrinos (ν) (a remarkable expt. achievement!)

Candidate LHC neutrino event from FASER's pilot run

New programs (FASER, SND@LHC) now collecting ν -nucleus scattering data

 ν fluxes from LHC (a) are large and (b) span 1-4 TeV in energy

33 / 37

LNV+LFV@LHC/FCC - vphys@IPPP

ν fluxes from LHC (a) are large and (b) span 1-4 TeV in energy

Kling & Nevay (PRD'21)

ν fluxes can be normalized to be likelihood functions $f_{\nu}(x)$... S

see, e.g., van Groenendijk, Krack, Rojo, et al [2407.09611]

R. Ruiz (IFJ PAN

... and used to calculate arbitrary high- p_T processes

... and used to calculate arbitrary high- p_T processes

INFO: storing files of previous run INFO: Storing fythia8 files of previous run INFO: Done

- * ロ > * 母 > * 目 > * 目 > ・ 目 = うへぐ

... including BSM processes in mg5amc

(日)

E1= 990

R. Ruiz (IFJ PAN

36 / 37

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

thank you for your time!

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

37 / 37

backup

LNV+LFV@LHC/FCC - vphys@IPPP

The Black Box Theorem

LNV+LFV@LHC/FCC - vphys@IPPP

2 / 6

In '82, Schechter & Valle published (PRD'82) a seminal finding:

- Suppose $0\nu\beta\beta$ is mediated within "a 'natural' gauge theory" $\Delta L = -2 \text{ process}$
- *u*, *d* and *e*⁻ all carry weak charges

FIG. 1. Diagrams for neutrinoless double- β decay in an SU(2)×U(1) gauge theory. The standard diagram is Fig. 1(a). It is the only one which contains a virtual neutrino (of four-momentum p). d and u are the down and up quarks.

= nar

In '82, Schechter & Valle published (PRD'82) a seminal finding:

• Suppose $0\nu\beta\beta$ is mediated within "a 'natural' gauge theory" $\Delta L = -2 \text{ process}$

• *u*, *d* and *e*⁻ all carry weak charges

- always possible to build a many-loop,
 2-point graph with external ν_L, ν^c_L
- $0\nu\beta\beta$ generates a Majorana mass for ν
- holds generally for other $\Delta L \neq 0$ process for further discussions, see:

Hirsch, et al [hep-ph/0608207] and Pascoli, et al [1712.07611]

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a \overline{v}_e -to- v_e transition, that is, an effective Majorana mass term.

R. Ruiz (IFJ PAN)

LNV+LFV@LHC/FCC – vphys@IPPP

4 / 6

 γW^{\pm} and $W^{\pm} W^{\pm}$ scattering drive high-mass scattering rates!

Dicus, et al (PRD'91); Datta, Guchait, Pilaftsis (PRD'94); w/ Fuks, Neundorf, Peters, Saimpert (PRD'21) [2011:02547] 🗠

Poling Heavy Majorana Neutrinos and

Tracking Down the Origin of Neutrino Mass

Julia Gehrie

Department of Theoretical Physics, CERN, Seneva, Switzerland July 6, 2023 - Physics 36, 20

Collider experiments have set new direct limits on the existence of hypothetical heavy neutrinos, helping to constrain how ordinary neutrinos get their mass.

Search for $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell'^{\pm}$ quickly adopted by **ATLAS** and **CMS** experiments!

← CMS (PRL'22) [2206.08956]

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

R. Ruiz (IFJ PAN