Discovering new ν **s (HNLs) at the LHC**

Manimala Mitra

Institute of Physics (IOP), Bhubaneswar

New- ν **Physics: From Collider to Cosmology**

Experimental Observations

eV neutrino mass and mixing from oscillation and non-oscillation experiments

Origin of Neutrino Mass

Seesaw

Minkowski, 1977; Gell-mann, Raymond, Slansky- 1979,

Yanagida 1979, Mohapatra, Senjanovic 1980

Contd:

Type-I (also Type-III) contains heavy neutral lepton

- R-parity violating supersymmetry-(Masiero, 1982; Santamaria, Valle, 1987; Romao, Valle, 1992; Borzumati, 1996; B. Mukhopadhyaya, S Roy, F Vissani, PLB 1998, Anjan S Joshipura, Sudhir K Vempati, PRD 60, 1999...)
- Loop generated mass? Radiative inverse seesaw (A. Zee, 1980; A. Zee, K. S. Babu 1988; D, Choudhury et al., PRD 1994; Dev, Pilaftsis, 2012...)
- Others—dimension 7 $\frac{(LLHH)HH}{\Lambda^3}$ operators etc (K.S. Babu et al.,, 2009)

Higher Dimensional Probe of Seesaw

Babu-Nandi-Tavartkiladze (BNT) Model

K. S. Babu, S. Nandi, and Zurab Tavartkiladze, PRD (Rap Comm) 80, 071702(R) (2009)

6

$$V_{B-L}\left(\phi,S\right) = \mu_{S}^{2}S^{\dagger}S + \mu_{\phi}^{2}\phi^{\dagger}\phi + \lambda_{1}\left(\phi^{\dagger}\phi\right)^{2} + \lambda_{2}\left(S^{\dagger}S\right)^{2} + \lambda_{3}\left(\phi^{\dagger}\phi\right)\left(S^{\dagger}S\right)$$

Enlarged gauge sector $\rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Parity symmetric theory \rightarrow parity violating SM

- Two Higgs triplet $\Delta_L = (3, 1, 2), \ \Delta_R = (1, 3, 2).$ $\langle \Delta_R \rangle$ breaks the $SU(2)_R \times U(1)_{B-L} \to U(1)_Y$
- Sterile neutrino N is part of the gauge multiplet $\begin{pmatrix} N \\ e \end{pmatrix}$

• Additional gauge bosons W_R and Z'. $M_{W_R} \propto \langle \Delta_R \rangle$

Natural way to embed the sterile neutrinos

HNL at Colliders (single production along with a SM particle):

Multilepton, multijet final states

From arXiv: 1612.02728, S. Antusch et al.,

Heavy Neutral Lepton at colliders

pp collider - LHC (and FCC-hh)

- 1. T. Han et al., JHEP 05 (2009) 030
- 2. R.Ruiz et al., JHEP 02 (2015) 072, Front.in Phys. 6 (2018) 40
- 3. S. Goswami et al., Phys.Rev.D 91 (2015) 075007
- 4. P. Konar et al., Phys.Rev.D 91 (2015) 9,095007, JHEP 02 (2018) 083
- 5. P. Fileviez Perez et al., Phys.Rev.D 80 (2009) 073015
- 6. S. Antusch et al., Int.J.Mod.Phys.A 32 (2017) 14, 1750078, Phys.Lett.B 774 (2017) 114-118
- 7. B. Bajc et al., Phys.Rev.D 76 (2007) 055011
- 8. A. Maezza et al., Phys.Rev.D 82 (2010) 055022
- 9. V. Tello et al., Phys.Rev.Lett. 106 (2011) 151801
- 10. M. Nemevsek et al., Phys.Rev.D 83 (2011) 115014
- 11. G. Cottin et al., Phys.Rev.D 97 (2018) 5,055025, Phys.Rev.D 98 (2018) 3,035012, JHEP 09 (2021) 039
- 12. M. Mitra et al., Phys.Rev.D 94 (2016) 9, 095016, Phys.Rev.D 111 (2025) 1, 015005
- 13. P. S. Bhupal Dev et al., Phys.Rev.D 88 (2013) 033014, Phys.Rev.D 86 (2012) 093010.
- 14. A. Abada et al., Eur.Phys.J.C 82 (2022) 11, 1030
- 15. R. Padhan et al., Eur.Phys.J.C 82 (2022) 10,858
- 16. M. Drewes et al., Phys.Rev.D 101 (2020) 5,055002
- 17. R. Beltran et al., arXiv: 2501.09065
- 18. M. Chala et al., Phys.Rev.D 100 (2019) 11, 115019; Eur.Phys.J.C 80 (2020) 8, 743,

FCC-ee/CLIC/ILC/CEPC

- 1. P. Hernandez et al., *JHEP* 03 (2021) 117, *Eur.Phys.J.C* 79 (2019) 3, 220
- 2. S. Antusch et al., *JHEP* 05 (2015) 053,
- 3. S. Antusch et al., *JHEP* 04 (2016) 189, *JHEP* 12 (2016) 007,
- 4. M. Mitra et al., *Phys.Rev.D* 92 (2015) 075002
- 5. D. Marfatia et al., *JHEP* 04 (2023) 013
- 6. Q. H. Cao et al., *Phys.Rev.Lett.* 134 (2025) 2, 021801

And more.....

LHeC, FCC-he, Electron-lon

- 1. S. Antusch et al., *Int.J.Mod.Phys.A* 32 (2017) 14, 1750078
- 2. R. Padhan et al., *JHEP* 06 (2022) 168
- 3. T. Ghosh et al., *JHEP* 03 (2023) 020

And more.....

And more.....

Bounds:

Limits on active-sterile neutrino mixing V from neutrino mass, $(\beta\beta)_{0\nu}$ -decay, beam dump experiments and others...

- Light neutrino mass $V \sim 10^{-5}/\sqrt{M}$.
- $\blacktriangleright~{\rm For}~M=100~{\rm GeV},~V\sim 10^{-6}$ \rightarrow extremely small
- Experimental constraints $\rightarrow (\beta\beta)_{0\nu}$ -decay, beam dump experiments. $(\beta\beta)_{0\nu}$ -decay \rightarrow stringent. (Assumption is of a Majorana HNL)

Collider Searches (LHC)

12

S. Pascoli et al., JHEP 05 (2009) 030

 $m_N \sim 100~{\rm GeV} \rightarrow {\rm collider~sensitive}$

Heavy Majorana Decay

• To gauge bosons $N \to lW$ and $N \to Z\nu$. To Higgs $N \to \nu H$

- For higher mass almost 60% branching in IW mode
- Other decay modes has branching ~ 20%
- For lighter N with $M_N < M_W$, HNL has three body decays via off-shell W, Z, and H
- For M_N ~ few GeV, decay of N into lepton and a meson dominant

Collider signatures \rightarrow lepton channels

- Like sign/ different flavor diliptons $l^{\pm}l^{\pm}/l^{\pm}l'^{\mp} + 2j$
- Trilepton channels $l^{\pm}l^{\mp}l^{\pm} \rightarrow$ For Dirac neutrinos N_R
- Lepton number violating $l^{\pm}l^{\pm} \rightarrow$ Proof of heavy Majorana neutrinos N_R

Displaced HNL Search:

Higher than the active-sterile mixing preferred by neutrino mass measurement for a conventional Type-I seesaw

ATLAS collaboration: arXiv: 2204.11988, 1905.09787

Displaced decay of a boosted HNL

$$\sigma(pp \to NN \to J_{fat}^{dis} J_{fat}^{dis})\big|_{after-cut} = \sigma_p \times \mathcal{P}(L_1, L_2, \sqrt{s}, M_N, M_{Z'}, \theta) \times \epsilon_k, \qquad ($$

(5.8)

Deppisch, Padhan, Kulkarni and Mitra, Eur.Phys.J.C 82 (2022) 10, 858

and

$$\sigma(pp \to NN \to \underbrace{track_1 + ..track_n}_{after-cut} + \underbrace{Y}_{after-cut} = \sigma_p \times \mathcal{P}(L_1, L_2, \sqrt{s}, M_N, M_{Z'}, \theta) \times \epsilon_k,$$

Displaced and boosted decay of HNL

Degenerate vs non-degenerate HNL in gauged B-L Model

Pavel Fileviez Perez, Tao Han and Tong Li, Phys.Rev.D80:073015,2009

Left Right Symmetry- Alternate Signal Topology at LHC

Heavy Neutrino, BSM Gauge boson WR are present, enriched gauge sector

 M_N and M_{W_R} are hierarchical $\rightarrow l_2$ is collimated with the jets

Manimala Mitra, Richard Ruiz, Darren J. Scott, and Michael Spannowsky - PRD 94, 095016, 2016

- The transverse momentum $p_T(l, j_{\text{fat}}) \sim M_{W_R}/2$
- The separation between l_2 and q, q' will be small.

Boosted HNL in LRSM:

Boosted and displaced HNL in LRSM:

For $M_N < 70$ GeV and W_R of TeV mass range, HNL has large decay length

 $pp \rightarrow W_R \rightarrow lN = l + j_N^{displaced}$

M. Nemevsek et al., Phys. Rev. D 97, 115018 (2018)

Dedicated analysis on HNL displaced decay(MS vs HCaL) is required

LHC search and LNV meson decays ($0\nu 2\beta$ decay) are complimentary probes

HNL at LHC/HL-LHC for tri-lepton+MET in EFT framework

- ➤ H. L. Li et al., JHEP 11 (2021) 003
- > M. Chala et al., *Phys.Rev.D* 100 (2019) 11, 115019; *Eur.Phys.J.C* 80 (2020) 8, 743,
- > P. Hernandez et al., *JHEP* 03 (2021) 117,

- ► R. Beltran et al., e-Print: 2501.09065 [hep-ph]
- ► P. D. Bolton et al., arXiv 2502.06972

Reinterpretation of LHC constraint for HNL search (conservative approach?)

Effect of selection cuts for HL-LHC

Effect of selection cuts

		no. bjets $= 0$	no. $\ell^{\pm} = 3$	$M_{3\ell} < 80 { m ~GeV}$	$ M_{\ell^{\pm}\ell^{\mp}} - M_Z > 15 \text{ GeV}$	$p_T^{ m miss} < 75 { m ~GeV}$	$\sigma_{ m eff}[{ m fb}]$	η_s
ſ	50 GeV $(C_{\Lambda} > C'_{\Lambda})$ [6.59 fb]	6.59	1.34	1.30	1.30	1.29	1.29	26.86
	50 GeV($C_{\Lambda} < C'_{\Lambda}$) [2.25 ×10 ⁻² fb]	2.24×10^{-2} a	3.94×10^{-3}	9.93×10^{-5}	9.93×10^{-5}	9.89×10^{-5}	9.89×10^{-5}	2.23×10^{-3}
ſ	$VV \ [9847 \ { m fb}]$	9847	277.29	2.19	1.70	1.22	1.22	
	VVV [5.53 fb]	5.53	1.22	5.74×10^{-2}	4.29×10^{-2}	2.76×10^{-2}	2.76×10^{-2}	
	$tar{t}$ [51170 fb]	11289.56	92.18	11.57	8.72	4.35	4.35	
	$t\bar{t}W^{\pm}$ [13.22 fb]	2.29	4.83×10^{-1}	3.16×10^{-2}	2.31×10^{-2}	9.26×10^{-3}	9.26×10^{-3}	
	$t\bar{t}Z$ [7.26 fb]	1.31	3.99×10^{-1}	8.67×10^{-3}	6.66×10^{-3}	2.87×10^{-3}	$ 2.87 \times 10^{-3} $	

Following arXiv 1802.02965 (PRL120 (2018) 22, 221801)

> $M_{3l} < 80 \,\text{GeV}$ reduces signal for a higher C'_{Λ} and not suitable, although MN is low

► $P_T^{miss} < 75 \,\text{GeV}$ is not most optimal for higher C'_{Λ}

New sets of kinematic variables for HL-LHC - proposal

Transverse mass of opposite sign di-lepton system closest to MN

Low mass region

		No. b jets = 0	$\stackrel{\text{No.}}{\ell^{\pm} \geq 3}$	$M_{3\ell} > 550$	$\Delta \phi_{ m ratio} > 0.8$	$\Delta \phi^{\ell}_{\ell_+\ell} > 2.5$	$M_T^{\ell} > 5.0$	$M_T^{\ell^+\ell^-} < 55.0$	$ M_{\ell^\pm\ell^\mp}-M_Z >50$	$\sigma_{ m eff}[m fb]$	η_s
50 GeV ($C_{\Lambda} < [2.23 >$	$V \\ C'_{\Lambda}) \\ < 10^{-2} \text{ fb]}$	2.22×10^{-2a}	9.25×10^{-3}	8.37×10^{-3}	7.73×10^{-3}	7.57×10^{-3}	6.73×10^{-3}	6.71×10^{-3}	6.34×10^{-3}	6.34×10^{-3}	7.78×10^{-1}
VV[98 VVV [tī [511 tīW [±] [tīZ [7.	47 fb] 5.53 fb] 70 fb] 13.22 fb] 26 fb]	9847 5.53 11289.56 2.29 1.31 $I_{3l}, \Delta \phi_{l+l}^{l}$	3.95 5.87×10^{-2} 5.78 1.46×10^{-2} 3.22×10^{-2} , $M_T^{l^+l^-}$ - U	$\begin{array}{c} 1.19\\ 3.51 \times 10^{-2}\\ 1.09\\ 6.24 \times 10^{-3}\\ 9.13 \times 10^{-3}\end{array}$	$\begin{array}{c} 4.31 \times 10^{-1} \\ 1.48 \times 10^{-2} \\ 4.35 \times 10^{-1} \\ 2.27 \times 10^{-3} \\ 3.24 \times 10^{-3} \end{array}$	2.40×10^{-1} 1.23×10^{-2} 2.30×10^{-1} 1.88×10^{-3} 2.06×10^{-3}	2.04×10^{-1} 1.18×10^{-2} 1.84×10^{-1} 1.77×10^{-3} 1.94×10^{-3} ckground	1.35×10^{-1} 6.61 × 10 ⁻³ 1.23 × 10 ⁻¹ 1.03 × 10 ⁻³ 1.29 × 10 ⁻³ 1.29 × 10 ⁻³	9.89 × 10 ⁻² 4.21 × 10 ⁻³ 9.21 × 10 ⁻² 6.35×10^{-4} 5.08 × 10 ⁻⁴	9.89 × 10 ⁻² 4.21 × 10 ⁻³ 9.21 × 10 ⁻² 6.35 × 10 ⁻⁴ 5.08 × 10 ⁻⁴	$< C'_{\Lambda}$
r Significance 10 10	$ \begin{bmatrix} 0^{1} \\ 0^{0} \\ 0^{-1} \\ 0^{-2} \\ 0^{-3} \\ 10 $			$C_{\Lambda} = 7 \times 10^{-8}$ $C_{\Lambda} = 4 \times 10^{-9}$ $C_{\Lambda} = 4 \times 10^{-9}$ 40	M_{N} $C'_{\Lambda} = 7 \times 10^{-1}$ $C'_{\Lambda} = 4 \times 10^{-1}$ $C'_{\Lambda} = 4 \times 10^{-1}$ $C'_{\Lambda} = 4 \times 10^{-1}$	< M _W -9 -8 -8 BDT -70	80	ore than 2	σ significance	e for a la	rge C' _Λ
	10	20	00	M_N [GeV]	10	00				

Effect of selection cuts

High mass region

 $M_N = 450 \, GeV$

	no. bjets $= 0$	no. $\ell^{\pm} = 3$	$\left \left M_{\ell^{\pm}\ell^{\mp}} - M_Z \right > 15 \text{ GeV} \right $	$p_T^{\text{miss}} > 50 \text{ GeV}$	$\sigma_{ m eff}[{ m fb}]$	η_s
[450 GeV($C_{\Lambda} > C'_{\Lambda}$) [2.2 ×10 ⁻² fb]	2.2×10^{-2}	$ 1.17 \times 10^{-2} $	1.15×10^{-2}	8.96×10^{-3}	8.96×10^{-3}	5.7×10^{-2}
450 GeV($C_{\Lambda} < C'_{\Lambda}$) [7.6 ×10 ⁻² fb]	7.6×10^{-2}	4.02×10^{-2}	3.96×10^{-2}	3.08×10^{-2}	3.08×10^{-2}	1.96×10^{-1}
<i>VV</i> [9847 fb]	9847	202.31	115.07	50.95	50.95	
VVV [5.53 fb]	5.53	9.27×10^{-1}	5.53×10^{-1}	3.84×10^{-1}	3.84×10^{-1}	
$t\bar{t}$ [51170 fb]	11289.56	55.94	31.43	21.66	21.66	
$ t\bar{t}W^{\pm} [13.22 \text{ fb}]$	2.29	3.85×10^{-1}	2.29×10^{-1}	1.79×10^{-1}	$ 1.79 \times 10^{-1} $	
$t\bar{t}Z$ [7.26 fb]	1.31	3.50×10^{-1}	1.79×10^{-1}	1.41×10^{-1}	$ 1.41 \times 10^{-1} $	

Following arXiv 1802.02965 (PRL120 (2018) 22, 221801)

Background suppression should be more to have optimal signal sensitivity

New sets of kinematic variables for HL-LHC - proposal

	no. bjets $= 0$	no. $\ell^{\pm} \geq 3$	$M_{\ell^{\pm}\ell^{\mp}} > 100$	$M_{3\ell} > 550$	$p_{T_{ m ratio}} > 0.75$	$\sigma_{ m eff}[{ m fb}]$	η_s
450 GeV $(C_{\Lambda} > C'_{\Lambda})$ [2.2 ×10 ⁻² fb]	2.2×10^{-2}	6.58×10^{-3}	6.52×10^{-3}	6.52×10^{-3}	5.98×10^{-3}	5.98×10^{-3}	1.45
450 GeV $(C_{\Lambda} < C'_{\Lambda})$ [7.6 ×10 ⁻² fb]	7.6×10^{-2}	2.28×10^{-2}	2.27×10^{-2}	2.26×10^{-2}	2.08×10^{-2}	2.08×10^{-2}	4.49
VV [9847 fb]	9847	2.18×10^{-1}	9.54×10^{-2}	7.16×10^{-2}	4.26×10^{-2}	4.26×10^{-4}	
VVV [5.53 fb]	5.53	7.55×10^{-3}	3.98×10^{-3}	3.85×10^{-3}	2.01×10^{-3}	2.01×10^{-3}	
$t\bar{t}$ [51170 fb]	11279.98	0	0	0	0	0	
$t\bar{t}W^{\pm}$ [13.22 fb]	2.30	5.55×10^{-4}	4.76×10^{-4}	$ 4.76 \times 10^{-4}$	1.85×10^{-4}	1.85×10^{-4}	
$t\bar{t}Z$ [7.26 fb]	1.31	1.23×10^{-3}	5.52×10^{-4}	3.92×10^{-4}	1.89×10^{-4}	1.89×10^{-4}	

More than 4σ significance for a large C'_{Λ}

- Low scale neutrino mass models with heavy neutral lepton offer wide detection prospects at different terrestrial experiments
- Non canonical signatures at collider ~ Boosted, LLP searches can probe relatively smaller masses of HNL and canonical Type-I seesaw preferred active-sterile mixing
- Separation of production and decay mode of HNL facilitate to achieve enhance sensitivity
- **NR-EFT** operators such as \mathcal{O}_{duNe} can enhance the HNL production cross-section.
- The distributions of kinematic variables for a large Wilson coefficient of \mathcal{O}_{duNe} operator is distinct from the conventional Drell-Yan topology which is investigated in LHC searches.
- We propose some of the other variables $\Delta \phi_{ratio}, M_{3l}, \Delta \phi_{l+l-}^l, M_T^{l+l-}$ for $M_N < M_W, C_\Lambda < C'_\Lambda$, which are useful.

Neutrino Mass Models at Energy, Intensity, Cosmic frontiers

Thank You

Detector Geometry						
	FCC-hh					
Inner detector (ID)	(2-300) mm	(25-1550) mm				
Calorimeter (CAL)	(2000-4000) mm	(2700-4700) mm				
Muon Spectrometer (MS)	(4000-7000) mm	(6000-9000) mm				

Table 1: Coverage of geometric acceptance of various sub-detectors of the HL-LHC andFCC-hh.

BSM Physics

Collider signatures \rightarrow lepton channels

- Like sign/ different flavor diliptons $l^{\pm}l^{\pm}/l^{\pm}l'^{\mp} + 2j$
- Trilepton channels $l^{\pm}l^{\mp}l^{\pm} \rightarrow$ For Dirac neutrinos N_R
- Lepton number violating $l^{\pm}l^{\pm} \rightarrow$ Proof of heavy Majorana neutrinos N_R

Production from a LQ, and three body decay via off-shell LQ

Displaced fat-jet signature of HNL

- Occurs when N is displaced and boosted
- Decay products are collimated
- All the decay products can not be separately identified
- Appear as a fat-jet

G. Cottin, O. Fischer, S. Mandal, M. Mitra, R. Padhan JHEP 06 (2022) 168

M_N [GeV]	n_{σ}	$\mathcal{L}[{ m fb}^{-1}]$	\mathcal{Y}^{ex}
10	6.0 (41.5)	34.0 (0.7)	0.067 (0.035)
20	4.7 (39.7)	56.8 (0.8)	0.059 (0.017)
30	3.3 (30.4)	116.6 (1.3)	0.047 (0.013)

 $\mathscr{L} < 100 \, \mathrm{fb^{-1}}$ can probe a leptoquark of mass 1 TeV and RHN ~ 10 GeV mass

Displaced and boosted decay of RHN

Effect of selection cuts

	no. bjets $= 0$	no. $\ell^{\pm} = 3$	$M_{3\ell} < 80 { m ~GeV}$	$ M_{\ell^{\pm}\ell^{\mp}} - M_Z > 15 \text{ GeV}$	$p_T^{ m miss} < 75~{ m GeV}$	$\sigma_{ m eff}[{ m fb}]$	η_s
$50 \text{ GeV}(C_{\Lambda} > C'_{\Lambda})$ [6.59 fb]	6.59	1.34	1.30	1.30	1.29	1.29	26.86
50 GeV($C_{\Lambda} < C'_{\Lambda}$) [2.25 ×10 ⁻² fb]	2.24×10^{-2} a	3.94×10^{-3}	9.93×10^{-5}	9.93×10^{-5}	9.89×10^{-5}	9.89×10^{-5}	2.23×10^{-3}
VV [9847 fb]	9847	277.29	2.19	1.70	1.22	1.22	
VVV [5.53 fb]	5.53	1.22	5.74×10^{-2}	4.29×10^{-2}	2.76×10^{-2}	2.76×10^{-2}	
$tar{t}$ [51170 fb]	11289.56	92.18	11.57	8.72	4.35	4.35	
$t\bar{t}W^{\pm}$ [13.22 fb]	2.29	4.83×10^{-1}	3.16×10^{-2}	2.31×10^{-2}	9.26×10^{-3}	9.26×10^{-3}	
$tar{t}Z$ [7.26 fb]	1.31	3.99×10^{-1}	8.67×10^{-3}	6.66×10^{-3}	2.87×10^{-3}	2.87×10^{-3}	

Following arXiv 1802.02965 (PRL120 (2018) 22, 221801)

 $P_T^{miss} < 75 \, GeV$ is not most optimal for this scenario

Effect of selection cuts

High mass region $M_N = 450 \, GeV$

	no. bjets $= 0$	no. $\ell^{\pm} = 3$	$ M_{\ell^{\pm}\ell^{\mp}} - M_Z > 15 \text{ GeV}$	$p_T^{\rm miss} > 50 { m ~GeV}$	$\sigma_{ m eff}[m fb]$	η_s
[450 GeV($C_{\Lambda} > C'_{\Lambda}$) [2.2 ×10 ⁻² fb]	2.2×10^{-2}	1.17×10^{-2}	1.15×10^{-2}	8.96×10^{-3}	8.96×10^{-3}	5.7×10^{-2}
450 GeV($C_{\Lambda} < C'_{\Lambda}$) [7.6 ×10 ⁻² fb]	7.6×10^{-2}	4.02×10^{-2}	3.96×10^{-2}	3.08×10^{-2}	3.08×10^{-2}	1.96×10^{-1}
VV [9847 fb]	9847	202.31	115.07	50.95	50.95	
VVV [5.53 fb]	5.53	9.27×10^{-1}	5.53×10^{-1}	3.84×10^{-1}	3.84×10^{-1}	
$t\bar{t}$ [51170 fb]	11289.56	55.94	31.43	21.66	21.66	
$t\bar{t}W^{\pm}$ [13.22 fb]	2.29	3.85×10^{-1}	2.29×10^{-1}	1.79×10^{-1}	1.79×10^{-1}	
$t\bar{t}Z$ [7.26 fb]	1.31	3.50×10^{-1}	1.79×10^{-1}	1.41×10^{-1}	1.41×10^{-1}	

Following arXiv 1802.02965 (PRL120 (2018) 22, 221801)

Relevant kinematic variables

 $C_{\Lambda} < C'_{\Lambda}$

Outline of the talk:

Origin of Neutrino Masses, Mixings and Discovery Prospects

• Collider searches (and non-collider searches)

Broad spectra of neutrino mass models:

Experimental probe:

LHC search and LNV meson decays are complimentary probes

Contd:

Atre et al., JHEP **0905**, 030 (2009)

- Severe constraint from light neutrino mass \rightarrow possible to escape in presence of cancellation in neutrino mass matrix $M_{\nu} = M_D^T M_R^{-1} M_D$ or enhanced global symmetry.
- ► V_{eN} is tightly constrained from $(\beta\beta)_{0\nu}$ -decay upto TeV scale
- ► The muon and tau sector are less constrained → collider prospect

Another important probe of RHN is displaced fat-jet signature

For a leptoquark model with RHN

- Occurs when N is boosted
- Decay products are collimated
- All the decay products can not be separately identified
- Appear as a fat-jet

G. Cottin, O. Fischer, S. Mandal, M. Mitra, R. Padhan JHEP 06 (2022) 168

M_N [GeV]	n_{σ}	$\mathcal{L}[{ m fb}^{-1}]$	\mathcal{Y}^{ex}
10	6.0 (41.5)	34.0 (0.7)	0.067 (0.035)
20	4.7 (39.7)	56.8 (0.8)	0.059 (0.017)
30	3.3 (30.4)	116.6 (1.3)	0.047 (0.013)

Major Questions in Modern Particle Physics

 $\Omega h^2 = 0.1186 \pm 0.0020$

- Weakly interacting massive particle •
- **Feebly interacting massive particle** *

Other production mechanisms, such as conversion driven freeze out **

Testing BSM descriptions in experiments

DarkMatter Production

Weakly interacting massive particle

* Feebly interacting massive particle

• HNL as a FIMP

N is produced from decay or annihilation of thermal bath particles HNL as a WIMP

N N -> SM SM, BSM BSM generates the relic abundance • HNL as a NLOP and a SuperWimp

Late decay of N into DM + X contributes significantly to DM relic abundance Heavy Neutral Lepton:

Key ingredients behind neutrino mass generation

Heavy neutrino mass $M \sim {\rm eV-~GUT}$ scale

- ► Detection \rightarrow Collider, Oscillation, Peak searches, Kink, $(\beta\beta)_{0\nu}$ -decay,...
- And \rightarrow LFV processes, Non-unitary effect,...

Higher Dimensional Probe of Seesaw

Babu-Nandi-Tavartkiladze (BNT) Model

K. S. Babu, S. Nandi, and Zurab Tavartkiladze, PRD (Rap Comm) 80, 071702(R) (2009) ⁵¹

Loop Generated Dirac Neutrino Mass (Gauge extension)

An alternate version of Left-Right extension:

Classic way to generate Dirac mass of light neutrino

Loop Generated Neutrino Mass (Weinberg operator)

Non-trivial SU(2) or SU(3) multiplets (scalar/gauge bosons,