Constraints from neutrinoless double beta decay

[2402.07993] with W. Dekens, J. de Vries, D. Castillo, J. Menéndez, E. Mereghetti, P. Soriano, G. Zhou [2407.10560] with J. de Vries, M. Drewes, Y. Georis, J. Klarić

New-ν Physics: From Colliders to Cosmology IPPP Durham

Vaisakh Plakkot

Double beta decay

$\succ (n \rightarrow p + e^- + \bar{\nu}_e) \times 2$

Lepton number conserved

► Rare process: $T_{1/2}^{2\nu}$ (¹³⁶Xe) ≈ 2.2 · 10²¹ years

 e^{-}

 e^{-}

 $\bar{\nu}_{e}$

$(n \rightarrow p + e^- + \overline{\chi}_e) \times 2$

 \succ Lepton number violated: $L_i = 0, L_f = 2$

 \blacktriangleright Yet unseen process: $T_{1/2}^{0\nu}(^{136}\text{Xe}) > 3.8 \cdot 10^{26}$ years [KamLAND-Zen 2406.11438]

 e^{-}

 e^{-}

 ν_M

The Schechter-Valle theorem

 $ightarrow 0 \nu \beta \beta \Rightarrow$ Majorana neutrinos [Schechter, Valle '81]

> Majorana neutrinos $\Rightarrow 0\nu\beta\beta$?

The Schechter-Valle theorem

 $ightarrow 0 \nu \beta \beta \Rightarrow$ Majorana neutrinos [Schechter, Valle '81]

> Majorana neutrinos $\Rightarrow 0\nu\beta\beta$?

Prediction of a lifetime

 e^{-}

$$(T_{1/2}^{0\nu})^{-1} = |m_{\beta\beta}|^2 |\mathcal{M}|^2 G_{01}$$

How do you deal with the NMEs for arbitrary neutrino masses?

The "standard" prescription

Amplitude takes the functional form

 $A_{\nu}(m_i) \simeq A_{\nu}(0) \frac{\langle p^2 \rangle}{\langle p^2 \rangle + m_i^2}$

→ $\langle p^2 \rangle \sim m_\pi^2$, nucleus-dependent → Approximately mass-independent for $m_i \rightarrow 0$ → $\propto m_i^{-2}$ for large masses

All neutrinos are equal, but some are more equal than the others

7

> Hard neutrinos: $k_0 \sim \left| \vec{k} \right| \sim \Lambda_{\chi} \sim \text{GeV}$

> Soft neutrinos: $k_0 \sim |\vec{k}| \sim m_{\pi}$

> Potential neutrinos: $k_0 \sim \left|\vec{k}\right|^2 / m_N \sim m_\pi^2 / m_N$

> Ultrasoft neutrinos: $k_0 \sim |\vec{k}| \sim m_{\pi}^2/m_N$

Important particularly for lower masses where the rate can go to zero at leading order

Divide and conquer

> 100 MeV
$$\leq m_i < 2$$
 GeV: $A_v^{(\text{pot})}(m_i) + A_v^{(\text{hard})}(m_i)$

 \rightarrow Contains NMEs and interpolations formulae

 $> m_i < 100 \text{ MeV: } A_{\nu}^{(\text{pot},<)}(m_i) + A_{\nu}^{(\text{hard})}(m_i) + A_{\nu}^{(\text{usoft})}(m_i)$ > Contains transition NMEs and correction in potential term to avoid double counting

[Dekens et al. 2303.04168]

Standard 3+0 scenario

Limits on heavy neutrinos

Limits on heavy neutrinos

 $\left(T_{1/2}^{0\nu}\right)^{-1} = g_A^4 V_{ud}^2 G_{01} \left[\mathcal{U}_{eN}^2 \frac{M_N}{m_e} A_{\nu}(M_N) \right]$

The "minimal" 3+2 type-I seesaw model

> Sterile mass matrix:
$$M_M = \begin{pmatrix} \overline{M} \left(1 - \frac{\mu}{2}\right) & 0 \\ 0 & \overline{M} \left(1 + \frac{\mu}{2}\right) \end{pmatrix}$$

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix}$$

Five Majorana neutrinos; lightest neutrino massless

 $> 5 \times 5$ mixing matrix:

Probing the inverted mass ordering

➢ Next-gen experiments probe the IO band for 3 active neutrinos
 → No signal ⇒ some sort of cancellation between the SM and BSM neutrino contributions

 \rightarrow Lower bound on $U_e^2 \equiv \sum_{I=4,5} |\mathcal{U}_{eI}|^2$

$$\left| \left(T_{1/2}^{0\nu} \right)^{-1} \propto \left| A_{\nu}(0) \sum_{i=1,2,3} \mathcal{U}_{ei}^{2} m_{i} + \sum_{I=4,5} \mathcal{U}_{eI}^{2} M_{I} A_{\nu}(M_{I}) \right|^{2} \right|^{2}$$

Other points of attack

Leptogenesis: Convert lepton asymmetry to baryon asymmetry > Impose that correct matter-antimatter asymmetry must be produced

Cosmology: Compatibility with Big Bang Nucleosynthesis

Other searches: Upper limits on interaction strength from, e.g., displaced vertex searches

Discussed in other talks today

See Jacobo's talk

See William's talk

The hunt is on

 $U_e^2 = |\mathcal{U}_{e4}|^2 + |\mathcal{U}_{e5}|^2$

Summary

 $\geq 0\nu\beta\beta$ potentially a definitive probe of nature of neutrinos

> The constraining power of $0\nu\beta\beta$ almost unmatched for new (heavy) neutrino degrees of freedom

> Requirement of correct BAU + $0\nu\beta\beta$ bounds complementary to other experimental searches and cosmological constraints

> No $0\nu\beta\beta$ detection in the near future \Rightarrow small testable allowed parameter space left for minimal 3+2 models (in the inverted mass ordering)

Backup

Pieces of the puzzle

•
$$A_{\nu}^{(9)} = -2 \eta \frac{m_{\pi}^2}{m_i^2} \left[\frac{5}{6} g_1^{\pi\pi} \left(M_{GT,sd}^{PP} + M_{T,sd}^{PP} \right) + g_1^{\pi N} \left(M_{GT,sd}^{AP} + M_{T,sd}^{AP} \right) - \frac{2}{g_A^2} g_1^{NN} M_{F,sd} \right]$$

• $A_{\nu}^{(\mathrm{usoft})} = 2 \frac{R_A}{\pi g_A^2} \sum_n \langle 0_f^+ | \mathcal{J}^{\mu} | 1_n^+ \rangle \langle 1_n^+ | \mathcal{J}_{\mu} | 0_i^+ \rangle (f(m_i, \Delta E_1) + f(m_i, \Delta E_2))$

•
$$A_{\nu}^{(\text{pot})} = -\frac{M(0)}{1 + \frac{m_i}{m_a} + \left(\frac{m_i}{m_b}\right)^2} = -M(m_i)$$

• $A_{\nu}^{(\text{pot},<)} = -\left[M(m_i) - m_i \left(\frac{d}{dm_i}M(m_i)\right)\right|_{m_i=0}$
• $A_{\nu}^{(\text{hard})} = -\frac{2 m_{\pi}^2 g_{\nu}^{NN}(m_i)}{g_A^2} M_{F,sd}$

$$g_{\nu}^{NN}(m_i) = \frac{g_{\nu}^{NN}(0) \left(1 \pm \left(\frac{m_i}{m_c}\right)^2\right)}{1 + \left(\frac{m_i}{m_c}\right)^2 \left(\frac{m_i}{|m_d|}\right)^2}$$

Ultrasoft contributions

$$A_{\nu}^{(\text{usoft})} = 2 \frac{R_A}{\pi g_A^2} \sum_n \langle 0_f^+ | \mathcal{J}^{\mu} | 1_n^+ \rangle \langle 1_n^+ | \mathcal{J}_{\mu} | 0_i^+ \rangle (f(m_i, \Delta E_1) + f(m_i, \Delta E_2))$$

Adding a sterile neutrino

Cool contour plot

Casas-Ibarra parametrisation

•
$$U_{\nu} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\,\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\,\delta_{CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

• Ensure neutrino oscillation data (masses) are automatically satisfied

•
$$\Theta = i U_{\nu} \sqrt{m_{\nu}^{d}} \mathcal{R} \sqrt{M^{d}}^{-1}$$

• $\mathcal{R}_{NH} = \begin{pmatrix} 0 & 0 \\ \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{pmatrix}; \qquad \qquad \mathcal{R}_{IH} = \begin{pmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \\ 0 & 0 \end{pmatrix}$

A comparison of amplitudes

[2402.07993]

A toy 3+1 model

Small splitting approximation

 $\mathcal{A}_{eff} \equiv \sum_{i=1}^{2} \mathcal{U}_{ei}^2 m_i A_{\nu}(m_i)$

 $\left(T_{1/2}^{0\nu}\right)^{-1} \propto \left|\mathcal{A}_{eff}\right|^2$

$$U_e^2 = \sum_{I=4,5} |\mathcal{U}_{eI}|^2$$

Unconstrained $\mathcal{A}_{eff} \approx \sum_{i=1}^{N} m_i \mathcal{U}_{ei}^2 \left(A_{\nu}(0) - A_{\nu}(\overline{M}) \right) + e^{i\lambda} \mu U_e^2 \frac{\overline{M}^2}{2} A_{\nu}'(\overline{M})$

 $\lambda = f(\operatorname{Re}(\omega), \alpha_{ij}, \delta_{CP}, \dots)$

Exclusions galore

