Workshop

Summary

NEW MASUMENT NEW MASUMENT

50 mine

D'O)

TAULE

one path ten could be 14 faith and with on

Workshop

Summary

elowgenergymassmetricestarendiagonalingebyagenterytransformationse as in E me high energy scale $\Lambda \gg v$, leading to small Majorana neutrino masses $m_{ij}^{v\dagger} = \sigma_2 H^*$, the same Higgs doublet as $\psi_1 = 0$ but with opposite hypercharge M_{ij} and M_{ij} is to double the same high second ciated with some high energy scales is scale in the first of small Majorana heutrive masses m gy scale Λ . has sector below the mass entrow eak scheme m_{ij} is the sector below the mass m_{ij} in some arbitrary basis 10^{10} , e couplings to W^- are given by $V_{H} = W^- l_L \gamma^{\mu} v_H$ here $l = e, \mu, \tau$ are the charge are diagonalised by unitary transformations, as $m_i \log_2 22$, $2 p_i m_{ij}^{\nu} v_{Lj} + H.c.$ ns of the light neutring mass ergenstates $-\frac{1}{2}w_{Li}m_i$ are +H.c.mass matrices are diagonalised by unitary transformations, as in Eqs. 22, 23, $V_{e_L}m^e V_{e_R}^{\dagger} = [$ m_{μ} $V_{\nu_L} m^{\nu} V$ m_{2} by $-\frac{g}{\sqrt{2}}W_{\mu}^{-}\bar{l}_{L}\gamma^{\mu}v_{lL}$, where $l = qu, \tau$ are the charged lepton mass eigenstates, hence the charged s eigenstates v_1, y_2, v_3 are, ere we have identified the with any Pontecory and Makin Nakagawa-Sakata (MANS) h t neutrino mass eigenstates v_1, v_2, v_3 are, $\mathcal{L}_{lenton} = -\frac{W_1}{E} W_1 \left(\begin{array}{c} e_L \\ e_L \end{array} \right)$ $\gamma^{\mu} U_{\text{PMNS}} = V_2 + H.c. \quad U_{\text{PMNS}} = V_{e_L} V_{v_L}^{\dagger}.$ $\mathcal{L}_{lepton} =$ ee of the six phases can be reproved since each of the three charged lepton mass itary Pontecorvo-Makie Nakagawa Sakata (MNS) [75] matrix as, here charged lepton mass se rotations $e_1 \rightarrow a^{1/2}$ se rotations $e_{\rm L} \rightarrow e^{i\phi_e} e_{\rm L}$ and $e_{\rm R} \rightarrow e^{i\phi_e} e_{\rm R}$, etc., where the three phases ϕ_e , etc., Steve King demined the relies provide by the state of removed since each of the three charged leptop mass terms such as $m_e \overline{e}_L e_R$, etc., is left unchange

sets), one of the RHNs V_{μ} with mass M_{atm} masses of some magnitude would seem to be generic. If combined is small admixture θ is the set of the rest of the set of t A subtract the present way of a notably by the observation of neutrinoless double beta decay, they remain the present of \mathcal{A}_{V} and \mathcal{A}_{R} and $\mathcal{A$ The set of The small valorable matrix is the first of the second state of the second seco The product of the second point of the second product of the second of the second product of the second point of the second p testhe Dirac manufatrix

Why new vs?

 ${\cal V}$

new- ν dark matter: 1 keV – 100 keV

ν

Thomas Schwetz

Why new vs?

Short-baseline anomalies — summary

Anomaly	Channel	Status	Explanation?	
Reactor rate and shape	$\nu_e \rightarrow \nu_e$	fading away (< <mark>2</mark> σ) systematics dominated	systematics/nuclear physics	
Gallium / BEST	$\nu_e \rightarrow \nu_e$	very significant (~5ơ)	sterile oscillations in strong tension w reactor, solar, cosmology difficult to explain exotic decoherence (?)	
LSND	$\nu_{\mu} ightarrow \nu_{e}$	significant (<mark>3.8</mark> 0) ~25 yr anomaly	sterile oscillations in strong tension w disappearance data, cosmology difficult to explain HNL decay	
MiniBooNE	$\nu_{\mu} \rightarrow \nu_{e}$	very significant (<mark>4.8</mark> 0) relies on background estimate		

Thomas Schwetz

the mechanism described in the previous section, which in addition provides a framework to generate neutrino masses, following closely the discussion of Ref. [19], section 4. The beyond-SM ingrements of **DeWdeySre**:

Tension between cosmology and oscillation results? neutrinos") which play the usual role to generate active neutrino masses as in the type-I seesaw,

 $+ \mu_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{2}$ with μ^{2} and μ_{Φ} parameter and $\lambda_{H}, \lambda_{\Phi}, \lambda_{H\Phi}$ dimension i.e., no mixing between the assumption we avoid that Universe due to its interact troweak symmetry breaking with

$$\langle H \rangle = \frac{1}{\sqrt{1-1}}$$

with $v_{\rm EW} \simeq 246$ GeV deno pectation value (VEV). The

Why new vs?

Thomas Schwetz

Lepton number/flavor violation

Theory solution to $m_{\nu} \neq 0$ can be realized in *many* ways!

Minkowski ('77); Yanagida ('79); Glashow & Levy ('80); Gell-Mann et al., ('80); Mohapatra & Senjanović ('82); + many others

Richard Ruiz

Lepton number/flavor violation

The Type II Seesaw is special: generates m_{ν} without hypothesizing ν_R

Hypothesize a scalar $SU(2)_L$ triplet with lepton number L = -2

Example: △ decay rates encode inverse (IH) vs normal (NH) ordering of light neutrino masses

$$\Gamma(\Delta^{\pm\pm} \to \ell_i^{\pm} \ell_j^{\pm}) \sim y_{\Delta}^{ij} \sim (U_{\rm PMNS}^* \tilde{m}_{\nu}^{\rm diag} U_{\rm PMNS}^{\dagger})_{ij}$$

Lepton number/flavor violation

Zee-Babu model generates m_{ν} radiatively **without** hypothesizing ν_R

Few free parameters \implies rich experimental predictions

Lepton number/mayor violation

New programs (faser, snd@lhc) now collecting ν -nucleus scattering data

New vs?

Indirect searches at CMS

Prompt lepton (triggered)

- Results are interpreted as 95% CL upper exclusion limits on $|V_{\ell N}|^2$
 - ▶ For both the Majorana and Dirac scenarios
- Scenario in which the HNL mixes exclusively with one lepton family

Indirect searches at CMS

Anne-Mazarine Lyon

Indirect searches at ATLAS

ATLAS summary plots (electrons & muons)

Colliders currently provide strongest direct constraints for $m_N > m_K$

Matthias Siampert

The vSMEFT

In what follows, we will assume

Iepton number conservation (LNC)

or

- Iepton number violation (LNV) by $M \lesssim v$
- new heavy physics exists at scale $\Lambda \gg v$

Under the set assumptions, $M_{\overline{R}} = M_{OU}^{c} M_{OU}^{T}$ be present in the EFT

Arsenii Titov

The vSMEFT

Higgs-N operators

The vSMEFT

4-fermion pair-N operators

Name	Structure	$n_N = 1$	$n_N = 3$
\mathcal{O}_{dN}	$\left(\overline{d_R}\gamma^{\mu}d_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81
\mathcal{O}_{uN}	$\left(\overline{u_R}\gamma^{\mu}u_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81
\mathcal{O}_{QN}	$\left(\overline{Q}\gamma^{\mu}Q\right)\left(\overline{N_{R}}\gamma_{\mu}N_{R}\right)$	9	81
\mathcal{O}_{eN}	$\left(\overline{e_R}\gamma^{\mu}e_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81
\mathcal{O}_{NN}	$\left(\overline{N_R}\gamma_{\mu}N_R\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	1	36
\mathcal{O}_{LN}	$\left(\overline{L}\gamma^{\mu}L\right)\left(\overline{N_R}\gamma_{\mu}N_R\right)$	9	81

Majorana HNL, $c_{dN}^{11}/\Lambda^2 = c_{QN}^{11}/\Lambda^2 = c_{uN}^{11}/\Lambda^2 = 1/(7 \text{ TeV})^2$ $\Lambda = 7 \text{ TeV}$ 10^{-4} 10^{-6} 10^{-8} 10^{-10} Type-I Seesaw target region $|V_{eN}|^2$ 10^{-12} -1410 10^{-16} AL3X: 250 fb⁻¹ MAPP1 : 30 fb⁻¹ 10^{-18} ANUBIS: 3 ab⁻¹ MAPP2: 300 fb⁻ 10^{-20} CODEX–b: 300 fb[−] ATLAS: 300 fb⁻¹ FASER: 150 fb 10^{-22} FASER2: 3 ab⁻¹ ATLAS: 3 ab⁻¹ 10^{-24} 10^{2} 10^{3} 10^{0} 10^{1} 10 m_N [GeV]

$$\begin{split} \mathscr{L}_{S_d} &= g_{dN} \overline{d_R} N_R^c S_d + g_{ue} \overline{u_R} e_R^c S_d + g_{QL} \overline{Q} \epsilon L^c S_d + \text{h.c.} \\ \mathscr{L}_{S_u} &= g_{uN} \overline{u_R} N_R^c S_u + \text{h.c.} \\ \mathscr{L}_{S_Q} &= g_{QN} \overline{Q} N_R S_Q + g_{dL} \overline{d_R} L \epsilon S_Q + \text{h.c.} \end{split}$$

Constraints from KATRIN

DANSS (95% C.L.)

Stereo

(95% C.L.)

Prospect

(2*σ*)

best fit RAA

(2*σ*)

(95% C.L.)

Neutrino-4

(95% C.L.) BEST+GA

BEST+GA+SAGE

KATRIN exclusion

- Almost excluded the allowed region with the Gallium anomaly except a small region.
- A large section of the Reactor Antineutrino Anomaly was also excluded as exemplified.

Claudio Silva

Constraints from \mathbf{0}\nu\beta\beta

Vaisakh Plakkot

N

Constraints from hadron decays

 $J_i = J_i^{SM} + J_i^{NP}(\{g_j\})$

Sterile neutrinos described by four energy dimension-6 operators

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(\overline{c}_L \gamma_\mu b_L) (\overline{\ell}_L \gamma^\mu \nu_{\ell,L}) + g_{V_R}^N (\overline{c}_R \gamma_\mu b_R) (\overline{\ell}_R \gamma^\mu N_R) + g_{S_L}^N (\overline{c}_R b_L) (\overline{\ell}_L N_R) + g_{S_R}^N (\overline{c}_L b_R) (\overline{\ell}_L N_R) + g_T^N (\overline{c}_L \sigma_{\mu\nu} b_R) (\overline{\ell}_L \sigma^{\mu\nu} N_R) + \text{h.c.} \right]$$

• Hint at sterile neutrino with a mass of $m_N = 354 \text{ MeV}$

Tim Kretz

25

Constraints from W measurements

Operators contributing to $W \rightarrow Ne$:

 $(\text{sea } \bar{d})$

 c^{i}

(valence u)

 $\Delta \mathcal{L} = \frac{c_{LNH}^{i}}{\Lambda^{2}} \bar{L}_{i} \nu_{R} \tilde{H} H^{\dagger} H + \frac{c_{HNe}^{i}}{\Lambda^{2}} \Delta \mathcal{L} = \frac{c_{LNH}^{i}}{\Lambda^{2}} \bar{L}_{i} \nu_{R} \tilde{H} H^{\dagger} H + \frac{c_{HNe}^{i}}{\Lambda^{2}} \bar{\nu}_{R} \gamma^{\mu} e_{iR} H^{\dagger} i D_{\mu} H + \frac{c_{NW}^{i}}{\Lambda^{2}} \bar{L}_{i} \sigma^{\mu\nu} \nu_{R} \sigma_{I} \tilde{W}_{\mu\nu}^{I},$

 c_{LNH}^{ι} and c_{NW}^{ι} give rise to parity conserving interactions, while c_{HNe}^{ι} gives rise to a parity-violating V+A interaction - only this operator changes the kinematics of the W decays

Constraints from W measurements

Discovering new vs at the LHC

Discovering new vs at the LHC Reinterpretation of LHC constraint for HNL search (conservative approach)

distributions Fig 2.3.4 not available and validation is

Direct searches at ATLAS

- No significant excess seen, set limits at 95% CL
- Resolved and boosted channels not orthogonal and are not combined
- Significant increase in sensitivity in Dirac and Majorana scenarios for e and μ coupling
- Does not see the same ~3σ local excess observed by previous <u>CMS</u> search

Margaret Lutz

Direct searches at CMS

Direct searches at CMS

arxiv.2203.08039

Haifa Sfar

Direct searches at CMS

Haifa Sfar

Testing the origin of $\boldsymbol{\nu}$ masses

ProtoDUNE in beam dump configuration?

 Measurement of CP violation in neutrino oscillations, HNL mass and mixing with electron, muon and tau flavours can suffice to pin down matter-antimatter asymmetry.

Hernandez, JLP, Rius, Sandner 2305.14427

Jacobo Lopez-Pavon

Cosmological constraints on Smuller

EARLY UNIVERSE CONSTRAINTS

The total neutrino mass $\sum m_{\nu}$ impacts the CMB in various ways:

1) it **boosts the late-time non-relativistic density**, affecting the scale-angle relations on the last scattering surface and the **late ISW effects**.

2) affects the non-relativistic transition of neutrinos by changing the pressure-to-density ratio and causing metric fluctuations observable in the early ISW effect.
CC

3) it reduces weak lensing effects on the CMB by suppressing the matter power spectrum and CMB spectra at small scales.

ey DPIC F

of

ience

LATE UNIVERSE CONSTRAINTS

oration

How can we improve the CMB limit on Neutrinos?

cosmolog 1) Neutrinos will become non-relativistic particles, contributing to the matter quasar an energy density at late times. Depending on their mass, they will alter **cosmic** Spectros **distances**, measured by BAO and, in part, Supernovae.

2) Neutrinos will suppress structure formation, affecting other local observables such as the matter power spectrum and weak lensing. We can examine the large-scale structure of the Universe.

sis was in-product to include the large balance of the standard flat Λ CDM cosmological model with a matter density ired with a baryon density prior from Big Bang Nucleosynthesis and coustic angular scale from the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density in the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density in the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density in the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density in the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density in the standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard flat Λ CDM cosmological model with a matter density is a standard fl

$8.52\pm0.62){ m kms^-}$	Dataset	$\sum m_{ u} \left[eV ight]$
lensing data fror	ACT-DR6	< 3.32
$) \rm km s^{-1} Mpc^{-1}$. E	ACT-DR6 + BAO	< 1.10
p parameter au DI	ACT-DR6 + BAO + DES	< 0.773
e parameter w, DI	ACT-DR6 + BAO + SN	< 0.717
k energy equation	ACT-DR6 + BAO + DES + SN	< 0.722
with type Ia supe	ACT+Planck lensing	< 1.42
is 2.6σ for the DE	$\operatorname{ACT+Planck}$ lensing + BAO	< 0.527
ving results dis c	ACT+Planck lensing + BAO + DES	< 0.664
ion of the Ponthe	$\operatorname{ACT+Planck}$ lensing + BAO + SN	< 0.490
non or the Fanthe		0 000

New-v searches with Ice Cube

There is a slight preference for sterile neutrinos, which is in tension with other measurements

Ivan Martinez Soler

New-*v* **summary**

Many new results, a wide survey of new-v physics

Plenty of issues to follow up

Thanks to all the speakers for the insightful talks!

NEW MASUMENT NEW MASUMENT NEW SEARCHES