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which may be written as a matrix equation
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where the Yukawa matrix can be diagonalised by two independent unitary 3 ⇥ 3 transformations VeL and VeR acting on the triplets of the
lepton fields Li and eR j, so the Yukawa matrix can be written in the diagonal basis of Eq.17 without loss of generality. This is achieved
by using unitary matrices which satisfy V†V = I, where I is the unit matrix, with V†eL VeL = I and V†eR VeR = I inserted before and after the
matrix in Eq.21, with VeL and VeR chosen such that,
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where, in the diagonal basis,
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2.2 Neutrino mass and mixing from the Weinberg operator

After electroweak symmetry breaking the three chiral neutrinos ⌫eL, ⌫µL, ⌫⌧L of the SM remain massless. However since the neutrinos are
electrically neutral it is possible to write down a new kind of mass term envisaged by E. Majorana in 1937 [73], namely

m⌫⌫L⌫
c
L (24)

where ⌫L is a left-handed neutrino field and ⌫cL is its CP conjugate field8 ⌫cL = i�2⌫⇤L (a right-handed antineutrino field). Clearly such a
Majorana mass term would be forbidden if ⌫L carried electric charge. However in the SM ⌫L carries hypercharge so it is also forbidden9.
The origin of such Majorana masses must lie beyond the SM, but generically they could arise from some high energy gauge invariant
non-renormalisable operators as envisaged by S. Weinberg in 1979 [74],

i j(LT
i H̃⇤)(H̃†Lj)! m⌫†i j ⌫

c
Li⌫L j (25)

involving H̃ = i�2H⇤, the same Higgs doublet as in Eq. 6 but with opposite hypercharge Y = �1/2, where i j are some dimensionful
coe�cients associated with some high energy scale ⇤ � v, leading to small Majorana neutrino masses m⌫†i j = i jv2/2 ⇠ v2/⇤, suppressed
by the high energy scale ⇤.

The lepton mass sector below the electroweak symmetry breaking scale is then, in some arbitrary basis 10,

Llepton
mass = �eLime

i jeR j �
1
2
⌫Lim⌫i j⌫

c
L j + H.c. (26)

The low energy mass matrices are diagonalised by unitary transformations, as in Eqs. 22, 23,
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1
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. (27)

The couplings to W� are given by � gp
2
W�µ lL�µ⌫lL, where l = e, µ, ⌧ are the charged lepton mass eigenstates, hence the charged currents in

terms of the light neutrino mass eigenstates ⌫1, ⌫2, ⌫3 are,
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where we have identified the unitary Pontecorvo-Maki-Nakagawa-Sakata (MNS) [75] matrix as,

UPMNS = VeL V†⌫L
. (29)

Three of the six phases can be removed since each of the three charged lepton mass terms such as meeLeR, etc., is left unchanged by global
phase rotations eL ! ei�e eL and eR ! ei�e eR, etc., where the three phases �e, etc., are chosen to leave three physical (irremovable) phases
in UPMNS. There is no such phase freedom in the Majorana mass terms � 1

2 mi⌫i⌫ci where mi are real and positive.

8Here are elsewhere �2 is the second Pauli matrix.
9Sometimes ⌫L is said to be its own antiparticle, but this is not true since a beam of Majorana neutrinos ⌫L interacts di↵erently from a beam of antineutrinos ⌫cL since they
have have opposite hypercharge.
10Note that the neutrino mass matrix in Eq. 26 is the Hermitian conjugate of that in Eq. 25, where (m⌫)† = (m⌫)⇤, since it is complex symmetric. With this definition the
neutrino mass term looks similar to the charged lepton mass term.
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Fig. 6 The seesaw mechanism for one left-handed neutrino ⌫L and one right-handed neutrino ⌫R. Higgs doublets (the “givers of mass” depicted here
carrying weights) allow the active looking “light” neutrinos ⌫L to couple to ⌫R as in a Dirac mass term mD. Gauge invariance allows an abitrarily large mass
MR for the (“mysterious heavy neutrino”) ⌫R. This results in a suppressed light effective left-handed Majorana mass me↵

L ⇠ m2
D/MR for ⌫L. The active light

neutrinos ⌫L are subject to direct experimental observation as indicated by the magnifying glass.
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Fig. 7 Using the seesaw formula, me↵
L ⇡

m2
D

MR
⇡ 0.1 eV, we plot the square of the Dirac neutrino mass m2

D as a function of right-handed neutrino masses
MR. For example the dotted lines show that MR = 1016 GeV corresponds to mD = 103 GeV, while MR = 1010 GeV corresponds to mD = 1 GeV. The squares
of the charged quark and lepton masses are shown as coloured benchmark values of m2

D. For example taking m2
D = m2

e , the electron mass squared, would
correspond to MR ⇡ 2.6 TeV.

which we denote as ⌫ has mass m� ⇡ me↵
L in Eq. 50 is dominantly ⌫L with a small admixture of ⌫cR,15

N ⇡ ⌫R + ✓⌫cL, ⌫ ⇡ ⌫L � ✓⌫cR, (53)

where

✓ ⇡ mD

MR
, |✓|2 ⇡

|me↵
L |

MR
⇡ 10�10

 
1GeV

MR

!
, (54)

and the second equation follows from Eq. 50 with |me↵
L | ⇡

m2
D

MR
⇡ 0.1 eV. The heavy neutral lepton N has suppressed but non-zero electroweak

interactions since its mass eigenstate contains an admixture of the active neutrino ⌫cL. This allows the heavy state N to be produced
experimentally, thereby providing a possible test of the seesaw mechanism.

To see this explicitly consider for example the left-handed couplings of the electron mass eigenstate eL to the heavy charged weak gauge
boson W� (with similar results for the muon and tau),

� gp
2

W�µ eL�
µ⌫eL + H.c. (55)

15The approximation may be improved by expanding cos ✓ ⇡ 1 � 1
2 ✓

2, leading to unitarity violation as discussed later.
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involving H̃ = i�2H⇤, the same the Higgs doublet as in Eq. 6 but with opposite hypercharge Y = �1/2, where y⌫ is a dimensionless coupling
constant often called a neutrino Yukawa coupling. We identify the Dirac mass for the neutrino as

mD = y⌫
vp
2
. (44)

Then including only mD and MR we can write the mass terms as a matrix,

⇣
⌫L ⌫cR

⌘  0 mD

mD MR

!  
⌫cL
⌫R

!
. (45)

Since the right-handed neutrinos are electroweak singlets the Majorana masses of right-handed neutrinos MR may be orders of magnitude
larger than the electroweak scale. Although the left-handed Majorana masses mL in the 11 entry of the mass matrix are forbidden by
electroweak symmetry S U(2)L ⇥ U(1)Y , they are generated e↵ectively below the weak symmetry breaking scale, as follows.

The mass matrix in Eq. 45 may be diagonalised by,
 

cos ✓ � sin ✓
sin ✓ cos ✓

!  
0 mD

mD MR

!  
cos ✓ sin ✓
� sin ✓ cos ✓

!
=

 
m� 0
0 m+

!
(46)

where

tan 2✓ =
2mD

MR
. (47)

The mass eigenstates are,
 
⌫
N

!
=

 
cos ✓ � sin ✓
sin ✓ cos ✓

!  
⌫cL
⌫R

!
(48)

whose respective eigenvalues are,

m⌥ =
MR ⌥

q
M2

R + 4m2
D

2
(49)

with trace (m+) + (m�) = MR and determinant (m+)(m�) = �m2
D. Thus, for fixed mD, if one of the eigenvalues goes up the other goes down,

like a seesaw.
In the approximation that MR � mD the matrix in Eq. 45 may be diagonalised by a small angle rotation with sin ✓ ⇡ tan ✓ ⇡ ✓ ⇡ mD/MR,

and the heavier eigenvalue is approximately unchanged from the 22 element, m+ ⇡ MR, while the lighter eigenvalue m� fills in the zero
element in the 11 position and may thus be identified as a light e↵ective left-handed Majorana neutrino mass,

m� ⇡ me↵
L ⇡ �

m2
D

MR
, (50)

where the minus sign is practically irrelevant since it can be absorbed into the fermion field, and is often ignored. This is the type I
seesaw mechanism illustrated diagrammatically in Fig. 6. The key feature is that the e↵ective left-handed Majorana mass me↵

L is naturally
suppressed by the heavy mass MR. Neither the Dirac neutrino mass mD nor the right-handed neutrino mass MR are known, however
experimentally we know that at least one of the light neutrino masses must be around 0.1 eV. Using this information in Fig. 7 we use the
seesaw formula in Eq. 50 to plot possible values of mD and MR consistent with me↵

L = 0.1 eV.
We can identify the left-handed neutrino state ⌫L (above) as a linear combination of the coupling of the three left-handed neutrinos which

couple to the single right-handed neutrino ⌫R [91],

⌫R(d⌫eL + e⌫µL + f ⌫⌧L) ⌘ mD⌫R⌫L, (51)

where mD =
p
|d|2 + |e|2 + | f |2. With the seesaw mechanism, it is thus possible to generate one light neutrino ⌫L state with mass m ⇡ m2

D/MR,
which can be identified as the heaviest atmospheric neutrino, assuming a normal mass hierarchy [91]. Furthermore, if the couplings satisfy
d ⌧ e ⇠ f , then we can generate an approximately maximal atmospheric mixing angle and a small reactor angle [91],

tan ✓23 ⇡
|e|
| f | ⇠ 1, ✓13 ⇡

|d|
p
|e|2 + | f |2

. (52)

Thus the seesaw mechanism provides a high energy completion of the non-renormalisable Weinberg operators in Eq. 25, with the
right-handed neutrino mass MR providing an origin of the high energy mass scale ⇤. However, unlike the Weinberg operator, introducing
right-handed neutrinos provides a testable prediction, namely the existence of heavy neutral leptons N, as we now discuss.

3.2 The Heavy Neutral Lepton

According to the above discussion, in the approximation that MR � mD, the heavy neutral lepton mass eigenstate which we denote as N in
Eq. 48 has a mass m+ ⇡ MR from Eq. 49 and is dominantly identified as ⌫R with a small admixture of ⌫cL, while the light mass eigenstate
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�L �L�R

H̃ H̃

Fig. 6 The seesaw mechanism for one left-handed neutrino ⌫L and one right-handed neutrino ⌫R. Higgs doublets (the “givers of mass” depicted here
carrying weights) allow the active looking “light” neutrinos ⌫L to couple to ⌫R as in a Dirac mass term mD. Gauge invariance allows an abitrarily large mass
MR for the (“mysterious heavy neutrino”) ⌫R. This results in a suppressed light effective left-handed Majorana mass me↵

L ⇠ m2
D/MR for ⌫L. The active light

neutrinos ⌫L are subject to direct experimental observation as indicated by the magnifying glass.
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Fig. 7 Using the seesaw formula, me↵
L ⇡

m2
D

MR
⇡ 0.1 eV, we plot the square of the Dirac neutrino mass m2

D as a function of right-handed neutrino masses
MR. For example the dotted lines show that MR = 1016 GeV corresponds to mD = 103 GeV, while MR = 1010 GeV corresponds to mD = 1 GeV. The squares
of the charged quark and lepton masses are shown as coloured benchmark values of m2

D. For example taking m2
D = m2

e , the electron mass squared, would
correspond to MR ⇡ 2.6 TeV.

which we denote as ⌫ has mass m� ⇡ me↵
L in Eq. 50 is dominantly ⌫L with a small admixture of ⌫cR,15

N ⇡ ⌫R + ✓⌫cL, ⌫ ⇡ ⌫L � ✓⌫cR, (53)

where

✓ ⇡ mD

MR
, |✓|2 ⇡

|me↵
L |

MR
⇡ 10�10

 
1GeV

MR

!
, (54)

and the second equation follows from Eq. 50 with |me↵
L | ⇡

m2
D

MR
⇡ 0.1 eV. The heavy neutral lepton N has suppressed but non-zero electroweak

interactions since its mass eigenstate contains an admixture of the active neutrino ⌫cL. This allows the heavy state N to be produced
experimentally, thereby providing a possible test of the seesaw mechanism.

To see this explicitly consider for example the left-handed couplings of the electron mass eigenstate eL to the heavy charged weak gauge
boson W� (with similar results for the muon and tau),

� gp
2

W�µ eL�
µ⌫eL + H.c. (55)

15The approximation may be improved by expanding cos ✓ ⇡ 1 � 1
2 ✓

2, leading to unitarity violation as discussed later.

Unfortunately this is very small

However this is for unrealistic 
single RHN case… 

Seesaw line
Why new 𝜈s?

4

Steve King



Two Right-handed Neutrinos (minimal case)
First consider diagonal RHNs

16 Right-handed neutrinos: seesaw models and signatures

5 Two Right-Handed Neutrinos (the minimal case)

5.1 Parametrisation

Although the seesaw mechanism can qualitatively explain the smallness of neutrino masses through the heavy right-handed neutrinos
(RHNs), if one doesn’t make other assumptions, it contains too many parameters to make any particular predictions for neutrino mass and
mixing. In this section we consider the minimal case, consistent with all current neutrino data, of a two right-handed neutrino (2RHN)
model [150–152] where the lightest neutrino is massless m1 = 0. This can be regarded as the limiting case of three right-handed neutrinos,
where one of the right-handed neutrinos has a negligible contribution to the seesaw mechanism, and so can be regarded as being decoupled.

The Lagrangian is as in Eq. 58 where SM family indices are i, j = 1, 2, 3 as before but now there are only two right-handed neutrinos
labelled by a, b = 1, 2. In the flavour basis, the Lagrangian below the electroweak scale becomes as in Eq.64,

Llepton
mass = �

X

l=e,µ,⌧

lLmllR � ⌫lLmD
l1⌫R1 � ⌫lLmD

l2⌫R2 �
1
2
⌫cR1 M1⌫R1 �

1
2
⌫cR2 M2⌫R2 + H.c. (75)

The Dirac neutrino mass matrix with two right-handed neutrinos is a 3 ⇥ 2 matrix with two columns mD
l1 and mD

l2, where l = e, µ, ⌧, which
can be parameterised by one complex angle z or two real arbitrary parameters [153],

mD
l1 =

p
M1

⇣p
m2 cos zUPMNS

i2 +
p

m3 sin zUPMNS
i3

⌘

mD
l2 =

p
M2

⇣p
m2 sin zUPMNS

i2 � pm3 cos zUPMNS
i3

⌘
, (76)

for the case of normal neutrino mass squared ordering. Towards the goal of predictivity, the two right-handed neutrino model is clearly a
step forwards, since mD only involves linear combinations of two columns of the PMNS matrix, parameterised by a single complex angle z,
in this bottom-up approach, rather than three, as in Eq. 63, parameterised by three complex angles. The general two right-handed neutrino
model is indeed quite testable [95, 110, 112], and leads to a quite restrictive parameter space when leptogenesis is considered [95, 100, 106,
110, 125, 154–167].

For example, consider the case of Eq. 76 with sin z ⇡ 1 and cos z ⇡ 0,

mD
l1 ⇡

p
M1
p

m3UPMNS
l3

mD
l2 ⇡

p
M2
p

m2UPMNS
l2 . (77)

In this case the first column of mD, corresponding to the couplings of the first right-handed neutrino, are dominantly responsible for the
heaviest physical neutrino mass m3 and atmospheric mixing angle ✓23, while the second column of mD, corresponding to the couplings of
the subdominant second right-handed neutrino, are responsible for the physical neutrino mass m2 and the solar mixing angle ✓12.

However ultimately this reverse engineering approach does not tell us anything about the physics responsible for mD in the first place,
although it is useful for classifying equivalent seesaw models [168]. For example, if some model leads to a “texture” zero element of mD

enforced by some symmetry, this will fix the angle z to some precise value, which looks like a fine tuning, while in fact it might be a natural
consequence of the theory. In pursuit of predictive models, we shall now abandon the bottom-up approach, and focus on cases where mD is
fixed by some top-down theory.

5.2 Sequential Dominance of Three Right-Handed Neutrinos

In this subsection we consider the conditions which can naturally lead to a neutrino mass hierarchy

m1 ⌧ m2 ⌧ m3, (78)

together with large neutrino mixing angles, without any tuning or cancellations of parameters. Such cancellations can be avoided if each
column of the Dirac mass matrix is associated mainly with a particular physical neutrino mass, an approach known as sequential dominance
(SD) [91, 150, 151, 169] of right-handed neutrinos. Historically, SD was proposed before the general parameterisation in the previous
subsection. While the general parameterisation is a bottom-up model independent approach, SD is a top-down model dependent approach,
which can lead to predictions for the neutrino observables.

The basic idea of SD is that, in the flavour basis (diagonal RHNs and charged lepton masses), one of the RHNs ⌫atm
R with mass Matm

is dominantly responsible for the heaviest physical neutrino mass m3, while a second subdominant RHN ⌫sol
R with mass Msol is mainly

responsible for the second heaviest physical mass m2, and a third essentially decoupled RHN ⌫dec
R of mass Mdec gives a very suppressed

lightest neutrino mass m1. This is the scenario anticipated in the notation of Fig. 3, based on a limiting case of three right-handed neutrinos
as predicted for example by S O(10) GUTs, where particular models can lead to a strongly hierarchical and diagonal right-handed neutrino
mass matrix [170, 171]. In the limit that the third right-handed neutrino responsible for the lightest light neutrino mass is decoupled from
the seesaw mechanism, this leads to an e↵ective 2RHN model with a neutrino mass hierarchy, with m1 ⇡ 0, where the large neutrino mixing
angles arise in a natural way from ratios of couplings to the same right-handed neutrino [91, 150, 151, 169], as we now discuss.

The two right-handed neutrinos have the following diagonal heavy Majorana mass matrix, in a notation which is agnostic as to their
mass ordering,

MR =

 
Matm 0

0 Msol

!
. (79)

Right-handed neutrinos: seesaw models and signatures 17

The Dirac neutrino mass matrix in the flavour basis is written in a simple notation as,

mD =

0
BBBBBBBBB@

d a
e b
f c

1
CCCCCCCCCA
, (80)

where the first (second) column contains the couplings to the atmospheric (solar) RH neutrino,

⌫atm
R (d⌫eL + e⌫µL + f ⌫⌧L) + ⌫sol

R (a⌫eL + b⌫µL + c⌫⌧L). (81)

The atmospheric neutrino couplings will dominate the seesaw mechanism as in the single right-handed neutrino case in Eq. 51. 18

Using the seesaw formula in Eq. 60, with the matrices in Eqs. 79, 80, dropping the overall physically irrelevant minus sign, the light
e↵ective left-handed Majorana neutrino mass matrix m⌫ can be written as,

m⌫ =
1

Matm

0
BBBBBBBBB@

d2 de d f
de e2 e f
d f e f f 2

1
CCCCCCCCCA
+

1
Msol

0
BBBBBBBBB@

a2 ab ac
ab b2 bc
ac bc c2

1
CCCCCCCCCA
. (82)

The SD conditions are that ⌫atm
R (the first matrix above) dominates the seesaw mechanism,

(d, e, f )2

Matm
� (a, b, c)2

Msol
. (83)

Ignoring phases19, this leads to the approximate results for the neutrino parameters in the flavour basis, assuming d ⌧ e, f ,

tan ✓23 ⇡
|e|
| f | (84)

tan ✓12 ⇡
a

cos ✓23b � sin ✓23c
(85)

✓13 ⇡
1

m3

2
666664

a (sin ✓23b + cos ✓23c)
Msol

+
d
p
|e|2 + | f |2
Matm

3
777775 (86)

m3 ⇡
|e|2 + | f |2

Matm
(87)

m2 ⇡
a2

Msol
+

(cos ✓23b � sin ✓23c)2

Msol
, m1 ⇡ 0. (88)

These results show that the condition in Eq. 83 that ⌫atm
R dominates the seesaw mechanism achieves a normal neutrino mass hierarchy

m1 ⌧ m2 ⌧ m3, where the large atmospheric angle ✓23 arises from the approximate equality of couplings |e| ⇠ | f | of ⌫atm
R to ⌫µ and ⌫⌧, as in

Eqs. 51, 52. The large solar angle ✓12 arises from three roughly equal couplings a ⇠ b ⇠ c of ⌫sol
R to ⌫e, ⌫µ, ⌫⌧ in Eq. 81. In this way the large

mixing angles arise from ratios of couplings to the same right-handed neutrino and a normal neutrino mass hierarchy can coexist without
relying on accidental cancellations. Assuming d ⇡ 0 the reactor angle is given by ✓13 . m2/m3 [151] in agreement with the data.

Motivated by the above results, maximal atmospheric mixing tan ✓23 = 1 (✓23 = 45�) suggests that |e| = | f | and tri-maximal solar mixing
tan ✓12 =

1p
2

(✓12 = 35.26�) suggests that |b � c| = 2|a|, while small reactor angle suggests a texture zero d = 0, as mentioned above 20.
This motivates choosing e = f , b = na and c = (n � 2)a in Eq. 80, called constrained dominance sequence (CSD) for some real number
n [182–191],21

mD =

0
BBBBBBBBB@

0 a
e na
e (n � 2)a

1
CCCCCCCCCA
, (89)

18It is instructive to compare Eq. 77 to Eq. 80 with the condition in Eq. 83. In both cases the first column of the Dirac mass matrix dominates and leads to a natural
neutrino mass hierarchy. However Eq. 77 imposes the stronger requirement that the first (second) column of the Dirac matrix is proportional to the third (second) column
of the PMNS matrix. On the other hand, Eq. 80 makes no such requirement and hence is more general. For example, Eq. 80 allows for the possibility of a texture zero
which would violate Eq. 77. The special case of Eq. 80 where Eq. 77 is satisfied is known as form dominance [168, 172–177].
19For the full results including phases see [151].
20Alternatively, golden ratio solar mixing may be considered with tan ✓12 =

1
� , where � = (1 +

p
5)/2 is the golden ratio (✓12 = 31.7�) [178]. However, when corrections

from the reactor angle are taken into account, this leads to a prediction for the solar angle outside the current 3� region [179]. For other alternative cases using CP
symmetry, see [180, 181].
21There is also a flipped case with the same first column (0, e, e)T and the second column (a, (n � 2)a, na)T which yields related predictions ✓23 ! ⇡ � ✓23 and �! � + ⇡.
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The atmospheric neutrino couplings will dominate the seesaw mechanism as in the single right-handed neutrino case in Eq. 51. 18

Using the seesaw formula in Eq. 60, with the matrices in Eqs. 79, 80, dropping the overall physically irrelevant minus sign, the light
e↵ective left-handed Majorana neutrino mass matrix m⌫ can be written as,

m⌫ =
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The SD conditions are that ⌫atm
R (the first matrix above) dominates the seesaw mechanism,

(d, e, f )2

Matm
� (a, b, c)2

Msol
. (83)
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These results show that the condition in Eq. 83 that ⌫atm
R dominates the seesaw mechanism achieves a normal neutrino mass hierarchy

m1 ⌧ m2 ⌧ m3, where the large atmospheric angle ✓23 arises from the approximate equality of couplings |e| ⇠ | f | of ⌫atm
R to ⌫µ and ⌫⌧, as in

Eqs. 51, 52. The large solar angle ✓12 arises from three roughly equal couplings a ⇠ b ⇠ c of ⌫sol
R to ⌫e, ⌫µ, ⌫⌧ in Eq. 81. In this way the large

mixing angles arise from ratios of couplings to the same right-handed neutrino and a normal neutrino mass hierarchy can coexist without
relying on accidental cancellations. Assuming d ⇡ 0 the reactor angle is given by ✓13 . m2/m3 [151] in agreement with the data.

Motivated by the above results, maximal atmospheric mixing tan ✓23 = 1 (✓23 = 45�) suggests that |e| = | f | and tri-maximal solar mixing
tan ✓12 =
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2

(✓12 = 35.26�) suggests that |b � c| = 2|a|, while small reactor angle suggests a texture zero d = 0, as mentioned above 20.
This motivates choosing e = f , b = na and c = (n � 2)a in Eq. 80, called constrained dominance sequence (CSD) for some real number
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Right-handed neutrinos: seesaw models and signatures 13

in Weyl fermion notation in some arbitrary basis, where SM family indices i, j = 1, 2, 3 and right-handed neutrinos are labelled by a, b =
1, 2, 3. It is often convenient to work in the diagonal charged lepton and right-handed neutrino mass matrix basis, commonly referred to as
the flavour basis, but above we work in an arbitrary basis where all matrices above are not diagonal in general. As in Eqs. 43, 44 the Dirac
mass matrix is generated after the Higgs VEV by

H̃Liy⌫ia⌫Ra ! ⌫LimD
ia⌫Ra (59)

and, after integrating out the heavy right-handed neutrinos, the seesaw formula in Eq. 50 is generalised to the matrix equation 17

m⌫ ⇡ �mD M�1
R mT

D . (60)

Having integrated out the right-handed neutrinos, we are left with the lepton mass Lagrangian in Eq. 26, where the neutrino mass matrix m⌫

is given by Eq. 60, leading to neutrino mass and mixing, as in the case of the Weinberg operator.
In the three right-handed neutrino seesaw mechanism, there are clearly more parameters than observables, since the Dirac mass matrix

mD is a 3 ⇥ 3 matrix with arbitrary complex parameters, so this matrix alone has 18 free parameters. We now discuss a bottom-up approach
to parameterising seesaw parameters, while constraining them to be consistent with neutrino oscillation data [105].

It is often convenient to work in the basis discussed in Eq. 22, in which the charged lepton mass matrix is diagonal. We also work in
the diagonal right-handed neutrino mass basis, which together with the diagonal charged lepton mass basis, defines the flavour basis. In the
flavour basis, the neutrino mass matrix m⌫ is determined by the PMNS matrix, using Eqs. 29,69,

m⌫ ⇡ UPMNSdiag(m1,m2,m3)UT
PMNS. (61)

The condition on the seesaw parameters for obtaining the correct neutrino observables can be obtained by combining Eqs. 60 and 61,
dropping the unphysical minus sign,

mDdiag(M1,M2,M3)�1mT
D = UPMNSdiag(m1,m2,m3)UT

PMNS. (62)

The choice of Dirac neutrino mass matrix mD consistent with Eq. 62 is not unique. It may be parameterised in a bottom-up way by taking
the square root of Eq. 62, leading to,

mD = UPMNSdiag(m1,m2,m3)
1
2 RT diag(M1,M2,M3)

1
2 (63)

where R is a complex orthogonal 3 ⇥ 3 matrix which satisfies RT R = 1 and contains six real arbitrary parameters [105]. Clearly there remains
considerable freedom in the choice of parameters consistent with data. The allowed parameter space has been very widely studied [95, 106–
116], including analyses which specifically focus on leptogenesis [117–121], including flavour dependent e↵ects [122–128].

The seesaw mechanism provides a high energy completion of the non-renormalisable Weinberg operators in Eq. 25, and comes with
a prediction, namely the existence of right-handed (sterile) neutrinos or heavy neutral leptons Na. In what follows we shall extend the
discussion of heavy neutral leptons in Eqs. 53, 56, 55 to include three families of leptons, including three right-handed neutrinos, and also
discuss a new feature namely that, contrary to the case of the Weinberg operator, lepton mixing is no longer described by a unitary matrix.

4.2 Non-Unitarity of the Lepton Mixing Matrix

In the flavour basis the lepton mass Lagrangian after electroweak breaking becomes

Llepton
mass = �

X

l=e,µ,⌧

lLmllR � ⌫lLmD
la⌫Ra �

1
2
⌫cRa Ma

R⌫Ra + H.c. , (64)

The full neutrino mass matrix is then as in Eq. 45 but is now a 6 ⇥ 6 matrix with the first three rows and columns corresponding to the active
neutrinos are labeled by l = e, µ, ⌧ and the second three rows and columns by a, b = 1, 2, 3, corresponding to the right-handed neutrinos. It
can be block diagonalised by a 6 ⇥ 6 unitary matrix U [86],

U
 

0 mD

mT
D MR

!
UT ⇡

 
m⌫ 0
0 MR

!
(65)

To leading order in small angles, ✓la, which mix the right-handed sterile neutrino states with the left-handed active neutrino states the 6 ⇥ 6
matrix may be written as [129],

U ⇡
 
1 � 1

2 ✓✓
† ✓

�✓† 1 � 1
2 ✓
†✓

!
(66)

where 1 is the unit 3 ⇥ 3 matrix, and the matrix ✓la is given by the matrix form of Eq. 54

✓ ⇡ mD M�1
R . (67)

17We have written m⌫ = me↵
L as the light e↵ective left-handed Majorana neutrino mass matrix, defined by, 1

2 ⌫Lim⌫i j⌫
c
L j.
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5 Two Right-Handed Neutrinos (the minimal case)

5.1 Parametrisation

Although the seesaw mechanism can qualitatively explain the smallness of neutrino masses through the heavy right-handed neutrinos
(RHNs), if one doesn’t make other assumptions, it contains too many parameters to make any particular predictions for neutrino mass and
mixing. In this section we consider the minimal case, consistent with all current neutrino data, of a two right-handed neutrino (2RHN)
model [150–152] where the lightest neutrino is massless m1 = 0. This can be regarded as the limiting case of three right-handed neutrinos,
where one of the right-handed neutrinos has a negligible contribution to the seesaw mechanism, and so can be regarded as being decoupled.

The Lagrangian is as in Eq. 58 where SM family indices are i, j = 1, 2, 3 as before but now there are only two right-handed neutrinos
labelled by a, b = 1, 2. In the flavour basis, the Lagrangian below the electroweak scale becomes as in Eq.64,

Llepton
mass = �

X

l=e,µ,⌧

lLmllR � ⌫lLmD
l1⌫R1 � ⌫lLmD

l2⌫R2 �
1
2
⌫cR1 M1⌫R1 �

1
2
⌫cR2 M2⌫R2 + H.c. (75)

The Dirac neutrino mass matrix with two right-handed neutrinos is a 3 ⇥ 2 matrix with two columns mD
l1 and mD

l2, where l = e, µ, ⌧, which
can be parameterised by one complex angle z or two real arbitrary parameters [153],

mD
l1 =

p
M1

⇣p
m2 cos zUPMNS

i2 +
p

m3 sin zUPMNS
i3

⌘

mD
l2 =

p
M2

⇣p
m2 sin zUPMNS

i2 � pm3 cos zUPMNS
i3

⌘
, (76)

for the case of normal neutrino mass squared ordering. Towards the goal of predictivity, the two right-handed neutrino model is clearly a
step forwards, since mD only involves linear combinations of two columns of the PMNS matrix, parameterised by a single complex angle z,
in this bottom-up approach, rather than three, as in Eq. 63, parameterised by three complex angles. The general two right-handed neutrino
model is indeed quite testable [95, 110, 112], and leads to a quite restrictive parameter space when leptogenesis is considered [95, 100, 106,
110, 125, 154–167].

For example, consider the case of Eq. 76 with sin z ⇡ 1 and cos z ⇡ 0,

mD
l1 ⇡

p
M1
p

m3UPMNS
l3

mD
l2 ⇡

p
M2
p

m2UPMNS
l2 . (77)

In this case the first column of mD, corresponding to the couplings of the first right-handed neutrino, are dominantly responsible for the
heaviest physical neutrino mass m3 and atmospheric mixing angle ✓23, while the second column of mD, corresponding to the couplings of
the subdominant second right-handed neutrino, are responsible for the physical neutrino mass m2 and the solar mixing angle ✓12.

However ultimately this reverse engineering approach does not tell us anything about the physics responsible for mD in the first place,
although it is useful for classifying equivalent seesaw models [168]. For example, if some model leads to a “texture” zero element of mD

enforced by some symmetry, this will fix the angle z to some precise value, which looks like a fine tuning, while in fact it might be a natural
consequence of the theory. In pursuit of predictive models, we shall now abandon the bottom-up approach, and focus on cases where mD is
fixed by some top-down theory.

5.2 Sequential Dominance of Three Right-Handed Neutrinos

In this subsection we consider the conditions which can naturally lead to a neutrino mass hierarchy

m1 ⌧ m2 ⌧ m3, (78)

together with large neutrino mixing angles, without any tuning or cancellations of parameters. Such cancellations can be avoided if each
column of the Dirac mass matrix is associated mainly with a particular physical neutrino mass, an approach known as sequential dominance
(SD) [91, 150, 151, 169] of right-handed neutrinos. Historically, SD was proposed before the general parameterisation in the previous
subsection. While the general parameterisation is a bottom-up model independent approach, SD is a top-down model dependent approach,
which can lead to predictions for the neutrino observables.

The basic idea of SD is that, in the flavour basis (diagonal RHNs and charged lepton masses), one of the RHNs ⌫atm
R with mass Matm

is dominantly responsible for the heaviest physical neutrino mass m3, while a second subdominant RHN ⌫sol
R with mass Msol is mainly

responsible for the second heaviest physical mass m2, and a third essentially decoupled RHN ⌫dec
R of mass Mdec gives a very suppressed

lightest neutrino mass m1. This is the scenario anticipated in the notation of Fig. 3, based on a limiting case of three right-handed neutrinos
as predicted for example by S O(10) GUTs, where particular models can lead to a strongly hierarchical and diagonal right-handed neutrino
mass matrix [170, 171]. In the limit that the third right-handed neutrino responsible for the lightest light neutrino mass is decoupled from
the seesaw mechanism, this leads to an e↵ective 2RHN model with a neutrino mass hierarchy, with m1 ⇡ 0, where the large neutrino mixing
angles arise in a natural way from ratios of couplings to the same right-handed neutrino [91, 150, 151, 169], as we now discuss.

The two right-handed neutrinos have the following diagonal heavy Majorana mass matrix, in a notation which is agnostic as to their
mass ordering,

MR =

 
Matm 0

0 Msol

!
. (79)

E.g. Littlest Seesaw gives good fit to data

d = 0

e = f

b = 3a

c = a

Predicts 
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CSD(n) angle n = 2.5 n = 3 n = 3.45
normal ✓23 [�] 51.5+1.9

�2.2 45.5+2.3
�2.4 41.4+2.6

�2.6
normal � [�] 299.9+9.2

�9.9 272.2+9.6
�11.0 253.8+11.7

�13.8

flipped ✓23 [�] 38.5+1.9
�2.2 44.5+2.3

�2.4 48.6+2.6
�2.6

flipped � [�] 119.9+9.2
�9.9 92.2+9.6

�11.0 74.8+11.7
�13.8

both ✓12 [�] 34.31+0.16
�0.20 34.32+0.20

�0.24 34.36+0.18
�0.21

Table 1 The CSD(n) predictions for ✓23, � (for normal and flipped cases) and ✓12 (common to both cases), where the most accurately measured observ-
ables ✓13,�2

31,�
2
21 are used to fix the three parameters ⌘,ma,mb leading to the uncertainties shown. Predictions are shown for three values of n ⇡ 3, arising

from particular Littlest Seesaw models. Table adapted from [179].

whereupon Eq. 82 becomes,

m⌫ =
|e|2

Matm

0
BBBBBBBBB@

0 0 0
0 1 1
0 1 1

1
CCCCCCCCCA
+
|a|2
Msol

ei⌘

0
BBBBBBBBB@

1 n (n � 2)
n n2 n(n � 2)

(n � 2) n(n � 2) (n � 2)2

1
CCCCCCCCCA
, (90)

where ⌘ = 2 arg(a/e). The choice n ⇡ 3 provides a particularly good fit to neutrino oscillation data and is called the Littlest Seesaw
(LS) [185]. For example models based on CSD(3) [184–188], CSD(2.5) [192] may arise from vacuum alignment, and CSD(1 +

p
6) ⇡

CSD(3.45) [193–197] from modular symmetry. For a given value of n, predictions for the PMNS matrix and the three neutrino masses can
be analytically derived from the three real input parameters in Eq. 90, namely ma =

|e|2
Matm

, mb =
|a|2
Msol

, ⌘ = 2 arg(a/e) [185]. In practice, the
three input parameters ma,mb, ⌘ may be fixed using the three best measured observables ✓13,�2

31,�
2
21, leading to genuine predictions for the

least well measured observables ✓23, � and ✓12, as shown in Table 1 [179]. Note also that the neutrino mass matrix in Eq. 90 implies that

the first column of the PMNS matrix has the fixed magnitudes (
q

2
3 ,

q
1
6 ,

q
1
6 ) for any value of n, leading to atmospheric mixing sum rules

which implies (cos2 ✓12)(cos2 ✓13) = 2/3 and predicts cos � in terms of the atmospheric and reactor angles [185]. The results in Tab. 1, are
consistent with these atmospheric sum rule predictions, and fix the atmospheric angle, depending on n, for normal and flipped cases [179].

The heavy-light mixing angles for SD are given from Eqs.67, 79, 80,

✓lN =

0
BBBBBBBBBB@

d
Matm

a
Msol

e
Matm

b
Msol

f
Matm

c
Msol

1
CCCCCCCCCCA
. (91)

For CSD(3) (normal case of Littlest Seesaw),

|✓lN |2 ⇡

0
BBBBBBBBBB@

0 m2
3Msol

m3
2Matm

3m2
Msol

m3
2Matm

m2
3Msol

1
CCCCCCCCCCA
⇡

0
BBBBBBBBB@

0 0.03
0.25 0.26
0.25 0.03

1
CCCCCCCCCA
⇥ 10�10

 
1GeV

M

!
, (92)

where we have used Eqs. 36,132,131,89,91, which may be compared to the single right-handed neutrino estimate in Eq. 102, based on
|✓|2 ⇡ m⌫/M where a light neutrino mass of m⌫ = 0.1 eV was taken. The predictions in Eq. 92 seem to be out of reach of the planned future
experimental searches in Fig. 10. In any case, for hierarchical right-handed neutrino masses, leptogenesis requires the lightest right-handed
neutrino to have a mass around 1010 GeV [188, 198–201]. In such high scale seesaw models, the heavier right-handed neutrino will be
associated with the B � L breaking scale, whose breaking leads to cosmic strings which can generate an observable gravitational wave
signature [202, 203]. GUTs can also be probed in this way [204–209].

5.3 A Heavy Dirac Neutrino

Let us now consider the case of two RHNs ⌫R1, ⌫R2 which form an o↵-diagonal mass term [151],

⌫cR1 M⌫R2 + H.c. (93)

The 2 ⇥ 2 complex symmetric mass matrix MR has the form,

MR =

 
0 M
M 0

!
. (94)

The Majorana masses on the diagonal are simply assumed to be zero for now, but later on their absence will be enforced by a symmetry.
The mass term in Eq. 93, where ⌫cR1 is a left-handed antineutrino, may be compared to the Dirac mass of the electron in Eq. 8, and for

this reason the two right-handed neutrinos may be regarded as a single four component Dirac neutrino,

N =
 
⌫c1R
⌫2R

!
(95)

with a heavy Dirac mass MNN. Unlike the Majorana spinor in Eq. 40, the Dirac spinor above contains four independent degrees of freedom.

U2
e

U2
µ

Both smaller than 
SRHN estimate

✓23 ⇡ 45o

✓12 ⇡ 34o

✓13 ⇡ 8.5o

� ⇡ 270oarg(a2/e2) = exp(2⇡i/3)

Inverse seesaw mechanism
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The lepton Lagrangian, which respects both U(1)L and Z2 symmetry is given by,

Llepton
mass = �HLiye

i jeR j � H̃Liy⌫i1⌫R1 � �⌫cR1⌫R2 + H.c. . (110)

Note that lepton number L forbids explicit right-handed neutrino masses, and these must be generated from the Majoron field couplings.
However the Z2 assignments only allow one such Majoron coupling, namely the o↵-diagonal one, leading to the the o↵-diagonal right-
handed neutrino masses in Eq. 94. Note that ⌫R2 does not contribute to the renormalisable neutrino Yukawa interaction since it is odd under
Z2. However small soft Z2 violating terms can provide the missing Yukawa coupling to ⌫R2, as well as an explanation for its smallness.
Such terms will also lead to small Majorana mass terms, which splits the degeneracy of the two right-handed neutrinos, leading to resonant
leptogenesis and Majoron dark matter [215].

It is worth commenting that, without introducing Majoron fields, lepton number L, will enforce zero Majorana masses for all right-
handed neutrinos, leading to only Dirac masses for the light neutrino fields. Such Dirac masses should be extremely small, namely around
0.1 eV or less, so, without a seesaw mechanism, the origin of such tiny neutrino masses would be very puzzling. Of course the origin of the
hierarchical quark and charged lepton masses is already puzzling, so this would simply add to the mystery. Since L is a global symmetry,
it is presumably softly broken at some level, so right-handed neutrino masses of some magnitude would seem to be generic. If combined
with baryon number as B � L then it becomes possible to gauge it, but then it should be spontaneously broken above the weak scale, so
again right-handed neutrino masses would be expected. Nevertheless, Dirac physical neutrino mass models have been widely explored, and
until the Majorana nature of light neutrinos has been established, notably by the observation of neutrinoless double beta decay, they remain
a possibility.

6 Extra Singlet Neutrinos

6.1 Double Seesaw vs Inverse Seesaw

It is possible to introduce additional singlet fermions S R (which do not couple to the lepton doublets) in addition to the right-handed
neutrinos ⌫R (which have Dirac mass terms mD). If the singlets have Majorana masses µ, but the right-handed neutrinos have zero Majorana
masses MR = 0, then in the basis (⌫cL, ⌫R, S R), the mass matrix in block form is

0
BBBBBBBBB@

0 mD 0
mT

D 0 M
0 MT µ

1
CCCCCCCCCA
, (111)

which would be a 9 ⇥ 9 matrix for three copies of each of (⌫cL, ⌫R, S R).
Assuming a hierarchy of the singlet mass matrix µ, the (⌫R, S R) mass mixing matrix M, and the Dirac matrix mD,

µ � M � mD, (112)

then we have a two stage seesaw mechanism. In the first stage the Majorana mass matrix MR is generated,

MR = �Mµ�1 MT . (113)

Then in the second stage the light physical left-handed Majorana neutrino mass matrix is obtained in the usual way,

m⌫ = �mD M�1
R mT

D . (114)

Combining these equations gives

m⌫ = mD(MT )�1µM�1mT
D, (115)

which has a double suppression. This is called the double seesaw mechanism [216], typically used in high scale models to explain why MR

is below the GUT or string scale. Perhaps surprisingly, the same formula, Eq. 115, also applies to the case where µ is very small,

M � mD � µ , (116)

which corresponds to the inverse seesaw mechanism [107, 216–225] 22.

6.2 The Inverse Seesaw Mechanism

To understand how the inverse seesaw mechanism works let us first take the limit µ! 0, and consider one copy of (⌫cL, ⌫R, S R) (i.e. three
chiral fermions). Eq. 111 with µ = 0 then has the terms,

⌫R(MS c
R + mD⌫L) = M⌫R(S c

R + ✓⌫L) ⌘ M⌫RN, (117)

22If one allows the 1-3 elements of Eq. (111) to be filled in by a matrix M0 [221] then one obtains another version of the low energy seesaw mechanism called the linear
seesaw mechanism [221–223].
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Consider RHNs and singlets

Now switch on small mass μ
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where we have defined the small angle (c.f. Eq. 54),

✓ =
mD

M
. (118)

Eq. 117 yields a single heavy Dirac neutrino of mass M constructed from ⌫R and N, where the linear combination N consists mainly of S c
R

with a small admixture of ⌫L. The orthogonal linear combination ⌫ is massless and consists mainly of ⌫L with a small admixture of S c
R,

N = S c
R + ✓⌫L, ⌫ = ⌫L � ✓S c

R (119)

Inverting Eq. 119 gives,

S c
R = N � ✓⌫, ⌫L = ⌫ + ✓N, (120)

which may be compared to Eq. 56. Similar to the usual seesaw, the heavy Dirac neutrino may be produced via its small admixture ✓
component of the active neutrino ⌫L. The above analysis shows that the neutrino state ⌫ (mainly ⌫L) is massless if µ = 0, and so lepton
number L is unbroken.

Let us now include a small Majorana mass µ for the singlet S R,

µS RS c
R = µ(Nc � ✓⌫c)(N � ✓⌫) = µ✓2⌫c⌫ + · · ·! m⌫ = µ

m2
D

M2 (121)

which generates a small mass m⌫ for ⌫, using Eq. 118. It also generates a tiny mass splitting for the Dirac pair components ⌫R and N, since
the latter receives a negligible extra mass µ. From Eqs. 118, 121,

|✓|2 ⇡ |m⌫ |
µ
, (122)

which is controlled by µ and is independent of the heavy neutrino mass M, unlike Eq. 54. This means that, for a fixed m⌫, the heavy-light
mixing angle is larger for small µ. For example, for µ = 1 keV, and m⌫ = 0.1 eV, the mixing angle would be ✓ = 10�2. This would be
consistent with for example mD = 1 GeV and M = 102 GeV.

The above discussion may be readily generalised to the case of three active neutrinos ⌫Li, and three right-handed neutrinos ⌫Ra, and three
singlets S Rb, in which case the inverse seesaw formula for the light neutrino mass matrix takes the matrix form in Eq. 115. In the limit that
the mass matrix µ! 0 three light active neutrinos remain massless and lepton numbers Le, Lµ, L⌧ and total lepton number L (the sum of
the separate lepton numbers) are restored. The heavy-light mixing angles are calculated according to the matrix generalisation of Eq. 118,

✓ ⇡ mD M�1. (123)

It is always possible to choose a basis where the heavy Dirac mass matrix M is diagonal by performing rotations on ⌫R and S R. However,
having used up the transformations on S R, the matrix µ will not be diagonal in general. This implies that the light neutrino mass matrix
calculated using Eq. 115, in the diagonal M basis, will not only depend on the matrix mD but also on the arbitrary matrix µ. This makes it
very di�cult in general to make any predictions for the neutrino masses and mixing angles. However it is possible to envisage a minimal
case where predictivity is possible , as we now discuss.

6.3 Minimal Inverse Seesaw Model

The minimal example of the inverse seesaw mechanism involves two right-handed neutrinos and two singlets, so that the full mass matrix
in Eq.111 has the form,

0
BBBBBBBBB@

03⇥3 (mD)3⇥2 03⇥2

(mT
D)2⇥3 02⇥2 M2⇥2

02⇥3 (MT )2⇥2 µ2⇥2

1
CCCCCCCCCA
, (124)

where 0n⇥m are n ⇥ m dimensional submatrices consisting of zero elements. For example, one may achieve a natural mass hierarchy model
based on sequential dominance (SD), with matrices as in Eqs. 79, 80, assuming that the matrix µ is diagonal in the same basis that M is
diagonal (a non-trivial assumption),

mD =

0
BBBBBBBBB@

d a
e b
f c

1
CCCCCCCCCA
, M =

 
Matm 0

0 Msol

!
, µ =

 
µatm 0

0 µsol

!
. (125)

Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
as,

m⌫ =
µatm

M2
atm

0
BBBBBBBBB@

d2 de d f
de e2 e f
d f e f f 2

1
CCCCCCCCCA
+
µsol

M2
sol

0
BBBBBBBBB@

a2 ab ac
ab b2 bc
ac bc c2

1
CCCCCCCCCA
, (126)
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Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
as,
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which generates a small mass m⌫ for ⌫, using Eq. 118. It also generates a tiny mass splitting for the Dirac pair components ⌫R and N, since
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which is controlled by µ and is independent of the heavy neutrino mass M, unlike Eq. 54. This means that, for a fixed m⌫, the heavy-light
mixing angle is larger for small µ. For example, for µ = 1 keV, and m⌫ = 0.1 eV, the mixing angle would be ✓ = 10�2. This would be
consistent with for example mD = 1 GeV and M = 102 GeV.

The above discussion may be readily generalised to the case of three active neutrinos ⌫Li, and three right-handed neutrinos ⌫Ra, and three
singlets S Rb, in which case the inverse seesaw formula for the light neutrino mass matrix takes the matrix form in Eq. 115. In the limit that
the mass matrix µ! 0 three light active neutrinos remain massless and lepton numbers Le, Lµ, L⌧ and total lepton number L (the sum of
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6.3 Minimal Inverse Seesaw Model
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where 0n⇥m are n ⇥ m dimensional submatrices consisting of zero elements. For example, one may achieve a natural mass hierarchy model
based on sequential dominance (SD), with matrices as in Eqs. 79, 80, assuming that the matrix µ is diagonal in the same basis that M is
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Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
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Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
as,

m⌫ =
µatm

M2
atm

0
BBBBBBBBB@

d2 de d f
de e2 e f
d f e f f 2

1
CCCCCCCCCA
+
µsol

M2
sol

0
BBBBBBBBB@

a2 ab ac
ab b2 bc
ac bc c2

1
CCCCCCCCCA
, (126)

22 Right-handed neutrinos: seesaw models and signatures

where we have defined the small angle (c.f. Eq. 54),

✓ =
mD

M
. (118)

Eq. 117 yields a single heavy Dirac neutrino of mass M constructed from ⌫R and N, where the linear combination N consists mainly of S c
R

with a small admixture of ⌫L. The orthogonal linear combination ⌫ is massless and consists mainly of ⌫L with a small admixture of S c
R,

N = S c
R + ✓⌫L, ⌫ = ⌫L � ✓S c

R (119)

Inverting Eq. 119 gives,

S c
R = N � ✓⌫, ⌫L = ⌫ + ✓N, (120)

which may be compared to Eq. 56. Similar to the usual seesaw, the heavy Dirac neutrino may be produced via its small admixture ✓
component of the active neutrino ⌫L. The above analysis shows that the neutrino state ⌫ (mainly ⌫L) is massless if µ = 0, and so lepton
number L is unbroken.

Let us now include a small Majorana mass µ for the singlet S R,

µS RS c
R = µ(Nc � ✓⌫c)(N � ✓⌫) = µ✓2⌫c⌫ + · · ·! m⌫ = µ

m2
D

M2 (121)

which generates a small mass m⌫ for ⌫, using Eq. 118. It also generates a tiny mass splitting for the Dirac pair components ⌫R and N, since
the latter receives a negligible extra mass µ. From Eqs. 118, 121,

|✓|2 ⇡ |m⌫|
µ
, (122)

which is controlled by µ and is independent of the heavy neutrino mass M, unlike Eq. 54. This means that, for a fixed m⌫, the heavy-light
mixing angle is larger for small µ. For example, for µ = 1 keV, and m⌫ = 0.1 eV, the mixing angle would be ✓ = 10�2. This would be
consistent with for example mD = 1 GeV and M = 102 GeV.

The above discussion may be readily generalised to the case of three active neutrinos ⌫Li, and three right-handed neutrinos ⌫Ra, and three
singlets S Rb, in which case the inverse seesaw formula for the light neutrino mass matrix takes the matrix form in Eq. 115. In the limit that
the mass matrix µ! 0 three light active neutrinos remain massless and lepton numbers Le, Lµ, L⌧ and total lepton number L (the sum of
the separate lepton numbers) are restored. The heavy-light mixing angles are calculated according to the matrix generalisation of Eq. 118,

✓ ⇡ mD M�1. (123)

It is always possible to choose a basis where the heavy Dirac mass matrix M is diagonal by performing rotations on ⌫R and S R. However,
having used up the transformations on S R, the matrix µ will not be diagonal in general. This implies that the light neutrino mass matrix
calculated using Eq. 115, in the diagonal M basis, will not only depend on the matrix mD but also on the arbitrary matrix µ. This makes it
very di�cult in general to make any predictions for the neutrino masses and mixing angles. However it is possible to envisage a minimal
case where predictivity is possible , as we now discuss.

6.3 Minimal Inverse Seesaw Model

The minimal example of the inverse seesaw mechanism involves two right-handed neutrinos and two singlets, so that the full mass matrix
in Eq.111 has the form,

0
BBBBBBBBB@

03⇥3 (mD)3⇥2 03⇥2

(mT
D)2⇥3 02⇥2 M2⇥2

02⇥3 (MT )2⇥2 µ2⇥2

1
CCCCCCCCCA
, (124)

where 0n⇥m are n ⇥ m dimensional submatrices consisting of zero elements. For example, one may achieve a natural mass hierarchy model
based on sequential dominance (SD), with matrices as in Eqs. 79, 80, assuming that the matrix µ is diagonal in the same basis that M is
diagonal (a non-trivial assumption),

mD =

0
BBBBBBBBB@

d a
e b
f c

1
CCCCCCCCCA
, M =

 
Matm 0

0 Msol

!
, µ =

 
µatm 0

0 µsol

!
. (125)

Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
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Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
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Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
as,
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The lepton Lagrangian, which respects both U(1)L and Z2 symmetry is given by,

Llepton
mass = �HLiye

i jeR j � H̃Liy⌫i1⌫R1 � �⌫cR1⌫R2 + H.c. . (110)

Note that lepton number L forbids explicit right-handed neutrino masses, and these must be generated from the Majoron field couplings.
However the Z2 assignments only allow one such Majoron coupling, namely the o↵-diagonal one, leading to the the o↵-diagonal right-
handed neutrino masses in Eq. 94. Note that ⌫R2 does not contribute to the renormalisable neutrino Yukawa interaction since it is odd under
Z2. However small soft Z2 violating terms can provide the missing Yukawa coupling to ⌫R2, as well as an explanation for its smallness.
Such terms will also lead to small Majorana mass terms, which splits the degeneracy of the two right-handed neutrinos, leading to resonant
leptogenesis and Majoron dark matter [215].

It is worth commenting that, without introducing Majoron fields, lepton number L, will enforce zero Majorana masses for all right-
handed neutrinos, leading to only Dirac masses for the light neutrino fields. Such Dirac masses should be extremely small, namely around
0.1 eV or less, so, without a seesaw mechanism, the origin of such tiny neutrino masses would be very puzzling. Of course the origin of the
hierarchical quark and charged lepton masses is already puzzling, so this would simply add to the mystery. Since L is a global symmetry,
it is presumably softly broken at some level, so right-handed neutrino masses of some magnitude would seem to be generic. If combined
with baryon number as B � L then it becomes possible to gauge it, but then it should be spontaneously broken above the weak scale, so
again right-handed neutrino masses would be expected. Nevertheless, Dirac physical neutrino mass models have been widely explored, and
until the Majorana nature of light neutrinos has been established, notably by the observation of neutrinoless double beta decay, they remain
a possibility.

6 Extra Singlet Neutrinos

6.1 Double Seesaw vs Inverse Seesaw

It is possible to introduce additional singlet fermions S R (which do not couple to the lepton doublets) in addition to the right-handed
neutrinos ⌫R (which have Dirac mass terms mD). If the singlets have Majorana masses µ, but the right-handed neutrinos have zero Majorana
masses MR = 0, then in the basis (⌫cL, ⌫R, S R), the mass matrix in block form is

0
BBBBBBBBB@

0 mD 0
mT

D 0 M
0 MT µ

1
CCCCCCCCCA
, (111)

which would be a 9 ⇥ 9 matrix for three copies of each of (⌫cL, ⌫R, S R).
Assuming a hierarchy of the singlet mass matrix µ, the (⌫R, S R) mass mixing matrix M, and the Dirac matrix mD,

µ � M � mD, (112)

then we have a two stage seesaw mechanism. In the first stage the Majorana mass matrix MR is generated,

MR = �Mµ�1 MT . (113)

Then in the second stage the light physical left-handed Majorana neutrino mass matrix is obtained in the usual way,

m⌫ = �mD M�1
R mT

D . (114)

Combining these equations gives

m⌫ = mD(MT )�1µM�1mT
D, (115)

which has a double suppression. This is called the double seesaw mechanism [216], typically used in high scale models to explain why MR

is below the GUT or string scale. Perhaps surprisingly, the same formula, Eq. 115, also applies to the case where µ is very small,

M � mD � µ , (116)

which corresponds to the inverse seesaw mechanism [107, 216–225] 22.

6.2 The Inverse Seesaw Mechanism

To understand how the inverse seesaw mechanism works let us first take the limit µ! 0, and consider one copy of (⌫cL, ⌫R, S R) (i.e. three
chiral fermions). Eq. 111 with µ = 0 then has the terms,

⌫R(MS c
R + mD⌫L) = M⌫R(S c

R + ✓⌫L) ⌘ M⌫RN, (117)

22If one allows the 1-3 elements of Eq. (111) to be filled in by a matrix M0 [221] then one obtains another version of the low energy seesaw mechanism called the linear
seesaw mechanism [221–223].

Inverse seesaw formula

Littlest Inverse 
Seesaw 
predicts
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which has a similar form to the usual SD case in Eq. 82, where the SD condition in Eq. 83 replaced by,

(e, f )2µatm

M2
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� (a, b, c)2µsol

M2
sol

. (127)

The equations for the large solar and atmospheric mixing angles are unchanged from Eqs. 84, 85, and the other results may be readily
extended,

tan ✓23 ⇡
|e|
| f | (128)

tan ✓12 ⇡
a

cos ✓23b � sin ✓23c
(129)
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m3 ⇡
(|e|2 + | f |2)µatm

M2
atm

(131)

m2 ⇡
a2µsol

M2
sol

+
(cos ✓23b � sin ✓23c)2µsol

M2
sol

, m1 ⇡ 0. (132)

The heavy-light mixing angles are as in Eq. 91 but are now enhanced by having small µ. An inverse seesaw version of the Littlest Seesaw
in Eq. 89 with n = 3 has also been considered leading to a predictive model [226]. The squared heavy-light mixing angles in this model are
given by

|✓lN |2 ⇡

0
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0 m2
3µsol
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µsol
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1
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(133)

which di↵ers from Eq. 92 since here the angles are enhanced by small values of µsol, µatm, as in Eq. 122. It is therefore entirely possible
to have values of Matm and Msol in the GeV-TeV range, together with arbitrarily large heavy-light mixing angles |✓lN |2, allowing the inverse
seesaw version of the SD model to be tested by experiment.

7 Conclusion

The SM is a remarkably successful theory which accounts for all particle physics experimental results, except for neutrino mass and mixing,
which requires it to be extended somehow. The non-renormalisable Weinberg operator can provide an origin for small neutrino masses and
mixing, but it is not a complete theory, and only provides an e↵ective description of some unknown physics associated with some high
energy scale ⇤, which is responsible for the operator.

In this article we have discussed the simplest renormalisable extension of the SM capable of describing neutrino phenomenology,
consisting of the addition of right-handed neutrinos which are singlets under the SM gauge group and are sometimes referred to as sterile
neutrinos, although they do have Yukawa couplings to active left-handed neutrinos. Assuming a single right-handed neutrino with a
Majorana mass much larger than its Dirac mass couplings to the left-handed active neutrinos, we introduced the seesaw mechanism,
which provides an ultraviolet completion of the Weinberg operator and a natural suppression mechanism for the e↵ective light left-handed
Majorana neutrino masses that are observed in experiments. We also showed that while the predicted heavy neutral lepton could be
experimentally observed if its mass was light enough, its heavy-light mixing angle, which controls its coupling to W bosons, is predicted to
be too small, assuming one right-handed neutrino responsible for the atmospheric neutrino mass.

The addition of right-handed neutrinos to the SM thus not only provides a renormalisable origin of the Weinberg operator, but also
comes with a prediction, namely the existence of heavy neutral leptons, corresponding to the extra degrees of freedom of the additional
right-handed neutrinos to which they approximate. The masses of the heavy neutral leptons, which to good approximation may be regarded
as the masses of the right-handed neutrinos, can range anywhere from the eV scale, to the keV scale, the GeV scale, the TeV scale and
upwards to the GUT scale and beyond. They may show their presence virtually in loops which contribute for example to µ! �, or if
su�ciently light, may be produced as real states in current and planned particle physics experiments. However their visibility depends
crucially on their couplings to heavy SM gauge bosons and to the Higgs, where such couplings depend on heavy-light mixing angles whose
values depend on the unknown seesaw parameters.

The seesaw mechanism, like any renormalisable theory, involves more parameters than the Weinberg operators, namely the masses of
the right-handed neutrinos, and the Dirac neutrino mass matrix elements in the flavour basis, which for example could be a 3 ⇥ 3 complex
matrix with 18 real parameters in the flavour basis, for the case of three right-handed neutrinos. This sounds like a lot of parameters, but
actually the same number of parameters also exists in the SM to describe each 3 ⇥ 3 complex quark mass matrix. The di↵erence is that

HNL mixing 
enhanced by 
small μ

In limit μ → 0
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The lepton Lagrangian, which respects both U(1)L and Z2 symmetry is given by,

Llepton
mass = �HLiye

i jeR j � H̃Liy⌫i1⌫R1 � �⌫cR1⌫R2 + H.c. . (110)

Note that lepton number L forbids explicit right-handed neutrino masses, and these must be generated from the Majoron field couplings.
However the Z2 assignments only allow one such Majoron coupling, namely the o↵-diagonal one, leading to the the o↵-diagonal right-
handed neutrino masses in Eq. 94. Note that ⌫R2 does not contribute to the renormalisable neutrino Yukawa interaction since it is odd under
Z2. However small soft Z2 violating terms can provide the missing Yukawa coupling to ⌫R2, as well as an explanation for its smallness.
Such terms will also lead to small Majorana mass terms, which splits the degeneracy of the two right-handed neutrinos, leading to resonant
leptogenesis and Majoron dark matter [215].

It is worth commenting that, without introducing Majoron fields, lepton number L, will enforce zero Majorana masses for all right-
handed neutrinos, leading to only Dirac masses for the light neutrino fields. Such Dirac masses should be extremely small, namely around
0.1 eV or less, so, without a seesaw mechanism, the origin of such tiny neutrino masses would be very puzzling. Of course the origin of the
hierarchical quark and charged lepton masses is already puzzling, so this would simply add to the mystery. Since L is a global symmetry,
it is presumably softly broken at some level, so right-handed neutrino masses of some magnitude would seem to be generic. If combined
with baryon number as B � L then it becomes possible to gauge it, but then it should be spontaneously broken above the weak scale, so
again right-handed neutrino masses would be expected. Nevertheless, Dirac physical neutrino mass models have been widely explored, and
until the Majorana nature of light neutrinos has been established, notably by the observation of neutrinoless double beta decay, they remain
a possibility.

6 Extra Singlet Neutrinos

6.1 Double Seesaw vs Inverse Seesaw

It is possible to introduce additional singlet fermions S R (which do not couple to the lepton doublets) in addition to the right-handed
neutrinos ⌫R (which have Dirac mass terms mD). If the singlets have Majorana masses µ, but the right-handed neutrinos have zero Majorana
masses MR = 0, then in the basis (⌫cL, ⌫R, S R), the mass matrix in block form is

0
BBBBBBBBB@

0 mD 0
mT

D 0 M
0 MT µ

1
CCCCCCCCCA
, (111)

which would be a 9 ⇥ 9 matrix for three copies of each of (⌫cL, ⌫R, S R).
Assuming a hierarchy of the singlet mass matrix µ, the (⌫R, S R) mass mixing matrix M, and the Dirac matrix mD,

µ � M � mD, (112)

then we have a two stage seesaw mechanism. In the first stage the Majorana mass matrix MR is generated,

MR = �Mµ�1 MT . (113)

Then in the second stage the light physical left-handed Majorana neutrino mass matrix is obtained in the usual way,

m⌫ = �mD M�1
R mT

D . (114)

Combining these equations gives

m⌫ = mD(MT )�1µM�1mT
D, (115)

which has a double suppression. This is called the double seesaw mechanism [216], typically used in high scale models to explain why MR

is below the GUT or string scale. Perhaps surprisingly, the same formula, Eq. 115, also applies to the case where µ is very small,

M � mD � µ , (116)

which corresponds to the inverse seesaw mechanism [107, 216–225] 22.

6.2 The Inverse Seesaw Mechanism

To understand how the inverse seesaw mechanism works let us first take the limit µ! 0, and consider one copy of (⌫cL, ⌫R, S R) (i.e. three
chiral fermions). Eq. 111 with µ = 0 then has the terms,

⌫R(MS c
R + mD⌫L) = M⌫R(S c

R + ✓⌫L) ⌘ M⌫RN, (117)

22If one allows the 1-3 elements of Eq. (111) to be filled in by a matrix M0 [221] then one obtains another version of the low energy seesaw mechanism called the linear
seesaw mechanism [221–223].
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where we have defined the small angle (c.f. Eq. 54),

✓ =
mD

M
. (118)

Eq. 117 yields a single heavy Dirac neutrino of mass M constructed from ⌫R and N, where the linear combination N consists mainly of S c
R

with a small admixture of ⌫L. The orthogonal linear combination ⌫ is massless and consists mainly of ⌫L with a small admixture of S c
R,

N = S c
R + ✓⌫L, ⌫ = ⌫L � ✓S c

R (119)

Inverting Eq. 119 gives,

S c
R = N � ✓⌫, ⌫L = ⌫ + ✓N, (120)

which may be compared to Eq. 56. Similar to the usual seesaw, the heavy Dirac neutrino may be produced via its small admixture ✓
component of the active neutrino ⌫L. The above analysis shows that the neutrino state ⌫ (mainly ⌫L) is massless if µ = 0, and so lepton
number L is unbroken.

Let us now include a small Majorana mass µ for the singlet S R,

µS RS c
R = µ(Nc � ✓⌫c)(N � ✓⌫) = µ✓2⌫c⌫ + · · ·! m⌫ = µ

m2
D

M2 (121)

which generates a small mass m⌫ for ⌫, using Eq. 118. It also generates a tiny mass splitting for the Dirac pair components ⌫R and N, since
the latter receives a negligible extra mass µ. From Eqs. 118, 121,

|✓|2 ⇡ |m⌫|
µ
, (122)

which is controlled by µ and is independent of the heavy neutrino mass M, unlike Eq. 54. This means that, for a fixed m⌫, the heavy-light
mixing angle is larger for small µ. For example, for µ = 1 keV, and m⌫ = 0.1 eV, the mixing angle would be ✓ = 10�2. This would be
consistent with for example mD = 1 GeV and M = 102 GeV.

The above discussion may be readily generalised to the case of three active neutrinos ⌫Li, and three right-handed neutrinos ⌫Ra, and three
singlets S Rb, in which case the inverse seesaw formula for the light neutrino mass matrix takes the matrix form in Eq. 115. In the limit that
the mass matrix µ! 0 three light active neutrinos remain massless and lepton numbers Le, Lµ, L⌧ and total lepton number L (the sum of
the separate lepton numbers) are restored. The heavy-light mixing angles are calculated according to the matrix generalisation of Eq. 118,

✓ ⇡ mD M�1. (123)

It is always possible to choose a basis where the heavy Dirac mass matrix M is diagonal by performing rotations on ⌫R and S R. However,
having used up the transformations on S R, the matrix µ will not be diagonal in general. This implies that the light neutrino mass matrix
calculated using Eq. 115, in the diagonal M basis, will not only depend on the matrix mD but also on the arbitrary matrix µ. This makes it
very di�cult in general to make any predictions for the neutrino masses and mixing angles. However it is possible to envisage a minimal
case where predictivity is possible , as we now discuss.

6.3 Minimal Inverse Seesaw Model

The minimal example of the inverse seesaw mechanism involves two right-handed neutrinos and two singlets, so that the full mass matrix
in Eq.111 has the form,

0
BBBBBBBBB@

03⇥3 (mD)3⇥2 03⇥2

(mT
D)2⇥3 02⇥2 M2⇥2

02⇥3 (MT )2⇥2 µ2⇥2

1
CCCCCCCCCA
, (124)

where 0n⇥m are n ⇥ m dimensional submatrices consisting of zero elements. For example, one may achieve a natural mass hierarchy model
based on sequential dominance (SD), with matrices as in Eqs. 79, 80, assuming that the matrix µ is diagonal in the same basis that M is
diagonal (a non-trivial assumption),

mD =

0
BBBBBBBBB@

d a
e b
f c

1
CCCCCCCCCA
, M =

 
Matm 0

0 Msol

!
, µ =

 
µatm 0

0 µsol

!
. (125)

Using the inverse seesaw formula in Eq. 115 with Eq. 125, the light e↵ective left-handed Majorana neutrino mass matrix m⌫ is now written
as,

m⌫ =
µatm

M2
atm

0
BBBBBBBBB@

d2 de d f
de e2 e f
d f e f f 2

1
CCCCCCCCCA
+
µsol

M2
sol

0
BBBBBBBBB@

a2 ab ac
ab b2 bc
ac bc c2

1
CCCCCCCCCA
, (126)
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new-  dark matter: 1 keV – 100 keVν

Figure 14: Constraints on sterile neutrino DM. The solid lines represent the most important constraints
that are largely model independent, i.e., they can be derived for a generic SM-singlet fermion N of mass
M and a mixing angle ✓ with SM neutrinos, without specification of the model that this DM candidate is
embedded in. The model independent phase space bound (solid purple line) is based on Pauli’s exclusion
principle (c.f. Section 3.1). The bounds based on the non-observation of X-rays from the decay N ! ⌫�
(violet area, see Section 3.2 for details) assume that the decay occurs solely through mixing with the active
neutrinos with the decay rate given by eq. (29). In the presence of additional interactions, these constraints
could be stronger, see e.g. [520]. All X-ray bounds have been smoothed and divided by a factor 2 to account
for the uncertainty in the DM density in the observed objects. They are compared to two estimates of the
ATHENA sensitivity made in ref. [234]. The blue square marks the interpretation of the 3.5 keV excess as
decaying sterile neutrino DM [184, 188]. All other constraints depend on the sterile neutrino production
mechanism. As an example, we here show di↵erent bounds that apply to thermally produced sterile
neutrino DM, cf. section 4.2. The correct DM density is produced for any point along black solid line
via the non-resonant mechanism due to ✓-suppressed weak interactions (24) alone (Section 4.2.1). Above
this line the abundance of sterile neutrinos would exceed the observed DM density. We have indicated
this overclosure bound by a solid line because it applies to any sterile neutrino, i.e., singlet fermion that
mixes with the SM neutrinos. It can only be avoided if one either assumes significant deviations from the
standard thermal history of the universe or considers a mechanism that suppresses the neutrino production
at temperatures of a few hundred MeV, well within the energy range that is testable in experiments, cf. e.g.
[521]. For parameter values between the solid black line and the dotted green line, the observed DM density
can be generated by resonantly enhanced thermal production (Section 4.2.2). Below the dotted green line
the lepton asymmetries required for this mechanism to work are ruled out because they would alternate the
abundances of light elements produced during BBN [584]. The dotted purple line represents the lower bound
from phase space arguments that takes into account primordial distribution of sterile neutrinos, depending on
the production mechanism [22]. As a structure formation bound we choose to display the conservative lower
bound on the mass of resonantly produced sterile neutrinos, based on the BOSS Lyman-↵ forest data [268]
(see Section 3.3 for discussion). The structure formation constraints depend very strongly on the production
mechanism (Section 4). The dashed red line shows the sensitivity estimate for the TRISTAN upgrade of the
KATRIN experiment (90% C.L., ignoring systematics, c.f. Section 5.2).

58

Boyarsky et al., [arXiv:1807.07938]

minimal scenario  
ruled out
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Short-baseline anomalies — summary

Anomaly Channel Status Explanation?

Reactor 
rate and shape

fading away ( < 2σ)

systematics dominated systematics/nuclear physics

Gallium / BEST very significant (~5σ)

sterile oscillations in strong tension  
w reactor, solar, cosmology 

difficult to explain

exotic decoherence (?)

LSND significant (3.8σ)

~25 yr anomaly sterile oscillations in strong tension  

w disappearance data, cosmology  
difficult to explain


HNL decayMiniBooNE  very significant (4.8σ)

relies on background estimate

νe → νe

νμ → νe

νμ → νe

νe → νe
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Tension between cosmology and oscillation results?

updated from Gariazzo, Mena, TS, 2302.14159
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• introduce a set of  massless new- s  

• a mediator X coupled to neutrinos 

• convert active neutrinos into massless  new- s after BBN but before CMB decoupling 

• ~10 keV new-  dark matter freeze-out in the dark sector

Nχ ν

ν
ν

30

Farzan, Hannestad, 1510.02201; Escudero, TS, Terol-Calvo, 2211.01729; Benso, TS, Vatsyayan, 2410.23926

4

FIG. 1. Schematic representation of the mechanism to reduce the active neutrino number density relative to the one in the
Standard Model (shown in red) by equilibrating a dark sector consisting of N� = 10 massless Dirac fermion species and the
DM candidate  with mass m = 18 keV due to a mediator X with mass mX = 100 keV and coupling g = 2⇥ 10�4. The X

boson is produced initially from the inverse decays ⌫⌫ ! X and then decays dominantly to dark sector species, i.e. X ! ��

and X !   . The DM relic abundance ⌦ h
2 = 0.12± 0.0012 [45] is obtained once the interactions   $ �� freeze out.

where

mD = Y⌫vEW/

p
2 , mD

0 = Y
0
⌫
vEW/

p
2 ,

⇤ = Y�v�/

p
2 , ⇤0 = Y

0
�
v�/

p
2 , (9)

 = Y v�/

p
2 , 

0 = Y
0
 
v�/

p
2 .

The rank of the matrix (8) is 2Nheavy, leading to (3 +
Nlight�Nheavy) massless and 2Nheavy massive states. For
our purposes, we want 4 massive states in addition to
the Nheavy heavy right-handed neutrinos: the 3 active
neutrinos plus the DM candidate. Therefore, we chose
Nheavy = 4, and Nlight = N� + 1, leaving N� states
massless. One of the “light” dark sector fermions gets
massive, which will become our DM candidate, and we
single it out by denoting it with  to distinguish it from
its massless partners �.1

Note that only left-handed fields appear in the Yukawa
Lagrangian eq. (6) and receive masses according to (8),
whereas the right-handed fields �R and  R remain mass-
less due to the postulated Z2 symmetry. Hence, we are
left with

Ñ = 2N� + 1 ,

g̃ = 4N� + 2
(10)

massless states and degrees of freedom in total, respec-
tively, corresponding to �L,�R and  R.

Upon block diagonalisation (see Appendix A for de-

1
Here we assume that all three active neutrinos are massive. If the

lightest of them remains massless, we would need only Nheavy =

3 heavy right-handed neutrinos.

tails) we get the following mass eigenvalues

m� = 0 ,

m⌫ =
(mD

0
�mD

0
)2 + (mD

0⇤�mD⇤0)2 + (0⇤� ⇤0)2

M 0(m2

D
+ 2 + ⇤2) +M(mD

02 + 02 + ⇤02)
,

m ⇡
m

2

D
+ 

2 + ⇤2

M
+

mD
02 + 

02 + ⇤02

M 0 ,

mN 0 ⇡ M
0
,

mN ⇡ M . (11)

Here, m⌫ = U
⇤
⌫
m̂⌫U

†
⌫
, where U⌫ is the PMNS mixing

matrix in the diagonal mass basis for the charged lep-
tons and m̂⌫ = diag(m1,m2,m3) contains the physical
neutrino mass eigenvalues, and we use a2 = aa

T in order
to write the equations for m⌫, in a compact form.
The mass eigenstates are then obtained as

(�̂, ⌫̂,  ̂, N̂ 0, N̂)T = W†(�c

L
, ⌫

c

L
, 

c

L
, N

0
, N)T , (12)

where the mixing matrix W is given by

W =

0

BBBBBB@

1 ⇤
⇤

m
⇤
D

0 ⇤
0⇤

M 0†
⇤

⇤

M†

�⇤
T

m
T
D

1 mD
0⇤

0⇤
mD

0⇤

M 0†
m

⇤
D

M†

0 �mD
0T

0T 1 
0

M 0


M

�⇤
0T

M 0
�mD

0T

M 0
�0T

M 0 1 0
�⇤

T

M

�m
T
D

M

�T

M
0 1

1

CCCCCCA

⇥ Diag[1, U⌫ , 1, 1, 1] . (13)

In deriving the mixing matrix above, we adopt a di-
agonal basis for the right-handed neutrino mass matrix,
and assume the following hierarchy:

M � M
0
� mD � 

0
,⇤ � m

0
D
,⇤0

, . (14)

This corresponds to a regime where the dominant in-
teractions of N 0 are with  whereas N interacts domi-
nantly with � and ⌫. Indeed, in the limit of m0

D
,⇤0

,!
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A seesaw model for large neutrino mass and dark radiation
Escudero, TS, Terol-Calvo, 2211.01729

4

FIG. 2. Illustration of the mechanism of Farzan and Hannestad [30] to reduce the neutrino number density between BBN
and recombination. We show the relative number densities of active neutrinos (red), N� = 10 generations of massless sterile
fermions (blue), and the mediator boson X with mass mX = 1 keV (purple). For reference we show relevant events taking
place in the early Universe, see e.g. [46], as well as the region of temperatures at which neutrinos (or other relativistic species)
should be freestreaming [47].

lution of neutrino and dark-sector particle densities as a
function of photon temperature. For the parameters cho-
sen in the plot, the bound on the sum of neutrino masses
can be relaxed to 0.9 eV.

3. A SEESAW MODEL FOR LARGE
NEUTRINO MASSES AND DARK RADIATION

In this section we discuss a specific model realisation of
the mechanism described in the previous section, which
in addition provides a framework to generate neutrino
masses, following closely the discussion of Ref. [19], sec-
tion 4. The beyond-SM ingredients of the model are:

• three fermion singlets NR (“right-handed neutri-
nos”) which play the usual role to generate active
neutrino masses as in the type-I seesaw,

• a new abelian symmetry U(1)X which can be either
global or local,

• a scalar � with U(1)X charge +1, and

• a set of N� fermions � with U(1)X charge �1.

With these assignments we can write the following BSM
terms in the Lagrangian:

�L = NR Y⌫ `L
eH†+

1

2
NR MR N

c

R
+NRY� �L �+ h.c. .

(3.1)

Here H and `L are the SM Higgs and lepton doublets,
respectively, and eH = i ⌧2 H

⇤, MR is the 3⇥ 3 Majorana
mass matrix for NR, and Y⌫ and Y� are 3⇥3 and 3⇥N�

Yukawa matrices, respectively. As we are interested in
“large” neutrino masses, possibly in the quasi-degenerate
regime, we need 3 right-handed neutrinos NR

3. Here
and in the following we keep SU(2)L and flavour indices
contractions implicit. The scalar potential is

V = µ
2

H
H

†
H + �H

�
H

†
H

�2

+ µ
2

�
|�|

2 + ��|�|
4 + �H�|�|

2
H

†
H , (3.2)

with µ
2 and µ

2

�
parameters with dimensions of [mass]2

and �H ,��,�H� dimensionless. We assume �H� = 0,
i.e., no mixing between the two scalar fields. With this
assumption we avoid that � gets thermalised in the early
Universe due to its interactions with the SM Higgs. Elec-
troweak symmetry breaking takes place in the usual way,
with

hHi =
1

p
2

✓
0

vEW

◆
, (3.3)

with vEW ' 246 GeV denoting the SM Higgs vacuum ex-
pectation value (VEV). The breaking of the U(1)X takes

3
We note that the mixing pattern of very degenerate neutrinos is

particularly sensitive to radiative corrections [48–50]. In specific

flavor models this poses constraints on the scale of the origin of

neutrino masses, see e.g. for some constructions [51, 52].

ℒint = gX Z′ μ χγμχ

couplings to neutrinos induced by mixing: Z′ ↔ νν/νχ/χχ

gX = mZ′ 

vΦ

λχχ
Z′ 

= gX

λχν
Z′ 

= gXθνχ

λνν
Z′ 

= gXθ2
νχ

•3 heavy new- s (seesaw) 

• new abelian gauge symmetry    

• a scalar  charged under   

• a set of  massless new- s charged under  

ν
U(1)X

Φ U(1)X
Nχ ν U(1)X

Thomas Schwetz
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• DM mass 
 

• DM stability and X-ray constraints: 
,  

suppressed by   

require 

15 keV ≲ mψ ≲ 100 keV

ψ → νχχ ψ → νγ
θ2

νψ
θνψ ≲ 10−8

39

Right DM abundance in the relevant parameter region

8

Ñ = 21, we also show the numerical result by solving the
Boltzmann equations by blue points, matching closely
the blue curve corresponding to the analytical approx-
imation. For m

0
Z

> m , where the annihilation to �

dominates, the dependence on Ñ follows explicitly from
eq. (24). In the region where annihilation to Z

0 domi-
nates, i.e., when m is much larger than mZ0 , the Ñ de-
pendence appears due to the modification of xf via ⇠. It
should be noted that near the resonance region, i.e., when
mZ0 ' 2m , the analytical solution and the thermally
averaged cross-sections (eq. (24)) are not a good approx-
imation, and a careful treatment of the cross-section and
the freeze-out temperature is required in order to prop-
erly determine the DM relic abundance. Therefore, for
dealing with resonances, we use the complete formula for
thermal averaging (see Appendix B) and compute the
relic abundance numerically after solving the Boltzmann
equations. We find that in the region very close to the
resonance, the annihilation rate during freeze-out is so
large that we do not obtain the correct abundance.

In fig. 4, we show with solid lines of di↵erent colors con-
tours of di↵erent DM mass which satisfy the relic abun-
dance, highlighting the parameter space compatible with
accommodating keV scale DM in the model as well as
relaxing the cosmological neutrino mass bound. This is
the main result of our work.

Note that in the limits far away from the resonance,
the annihilation cross-sections from eq. (24) depend only
on the combination g/mZ0 = v� in both limits:

h�vi =
m

2

 

8⇡v4
�
xd

⇥

⇢
Ñ (mZ0 � m )
3 (mZ0 ⌧ m )

, (28)

where we have used hv
2
i = 6/xd Hence, in these limits,

the DM relic abundance according to eq. (26) fixes the
dark VEV for a given DM mass:

v� ' 105 keV
⇣

m 

15 keV

⌘1/2
✓
3.2

xf

◆1/2

⇥

⇢
2Ñ1/4 (mZ0 � m )
2.4 (mZ0 ⌧ m )

, (29)

in agreement with fig. 4. For large mixing angles ✓⌫�
(upper panel of fig. 4), we are in the limit mZ0 < m 

in large regions of the parameter space and therefore
the DM contours are determined by the combination
m /v

2

�
= g

2
m /m

2

Z0 , and depend mildly on Ñ due to
xf .

C. Stability and X-ray constraints

In our model, the interaction of  L and SM neutri-
nos with the massless states �L,R, R mediated by the
gauge boson Z

0 can lead to DM decay via three body

FIG. 4. Parameter space of the model with the shaded ar-
eas highlighting regions of the parameter space excluded by
several cosmological constraints, for a fixed value of ⌫�� mix-
ing ✓⌫� = 10�2 (top) and ✓⌫� = 10�3 (bottom), and N� = 10.
Along the orange, blue, purple solid curves the observed relic
DM density is obtained for m = 15, 50, 100 keV, respec-
tively. The gray dashed lines indicate a fixed value of the
U(1)X gauge coupling, g = mZ0/v� and the dotted lines cor-
respond to mZ0 = 2m for a given DM mass. The red region
is excluded from the thermalization condition, as the interac-
tions of Z0 with neutrinos are not strong enough. The blue
regions are excluded from BBN by requiring that Z0 is not in
equilibrium with ⌫’s at T > 0.7 MeV, and the green regions
show the area excluded by ⌫-free-streaming and CMB power
spectra. The gray shaded region is excluded from production
of � via ⌫ � � oscillations before BBN.

processes. The dominant ones are  ! ⌫��.5 There-
fore, in order for the DM to be stable on cosmological
timescales, we need to ensure that the lifetime of  rela-

5
The decay  ! 3⌫ is also allowed, but the amplitude of this

process is suppressed by the 3
rd

power of the mixing angle ✓⌫�,
instead of the single power of ✓⌫� that suppresses  ! ⌫��.
Therefore, to account for DM stability, we only need to consider

 ! ⌫��. Moreover, due to the absence of Z0 � interactions,

decays such as  ! 3� do not occur.

Th. Schwetz - Why new s, 9 April 2025ν40

Signatures of the model  Benso, TS, Vatsyayan, 2410.23926

massless dofs: 4Nχ + 2Thomas Schwetz
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Lepton number/flavor violation

Theory solution to mν != 0 can be realized in many ways!
Minkowski (’77); Yanagida (’79); Glashow & Levy (’80); Gell-Mann et al., (’80); Mohapatra & Senjanović (’82); + many others

mνk
!= 0

νR

∆I

Majorana
Dirac

Low scale Type I

High scale Type I

Singlet (Scoto.)

LRSM

U(1)B−L

TypeII

Higgs Doublet Ext.
DM

SO(10)
PS

SU(5)24F

Colored S
1/3
LQ

ΣI
SMEFT

Weinberg d = 5

LFV d = 6

d ≥ 7

νSMEFT TypeIII

RPV SUSY

Z@1 loop
ZB@n loop

SU(5)

collider strategy: infer Majorana nature1 or mass mechanism of ν
from LNV+LFV with new particles

1Black Box Theorem: LNV ⇐⇒ Majorana ν

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 7 / 37

Richard Ruiz



Lepton number/flavor violation
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The Type II Seesaw is special: generates mν without hypothesizing νR

Hypothesize a scalar SU(2)L triplet with lepton number L = −2

∆̂ = 1√
2

(
∆+

√
2∆++

√
2∆0 −∆+

)
, with L∆Φ # µh∆

(
ΦSM†∆̂ ·ΦSM†+H.c.

)

The mass scale µh∆ breaks lepton number, and induces 〈∆〉 &= 0:

〈∆̂〉 = v∆ ≈ µh∆v2EW√
2m2

∆

=⇒ left-handed Majorana masses for ν

∆L = − yij
∆√
2
Lc∆̂L = − yij

∆√
2

(
ν jc "jc

)( 0 0
v∆ 0

)(
ν i

"i

)

# −1
2

(√
2yij

∆v∆
)

︸ ︷︷ ︸
=mij

ν

ν jcν i

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 9 / 37

Few free parameters =⇒ rich experimental predictions
Fileviez Perez, Han, Li, et al, [0805.3536], Crivellin, et al [1807.10224], Fuks, Nemevšek, RR [1912.08975] + others

Example: ∆ decay rates encode inverse (IH) vs normal (NH)
ordering of light neutrino masses

Γ(∆±± → !±i !
±
j ) ∼ yij

∆ ∼ (U∗
PMNSm̃diag

ν U†
PMNS)ij

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 10 / 37

Richard Ruiz
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Zee-Babu model generates mν radiatively without hypothesizing νR

Hypothesize two scalar SU(2)L singlets k, h with weak hypercharge
Y = −2,−1 ( =⇒ Qk = −2,Qh = −1) with lepton number L = −2

LZB = LSM + (Dµk)†(Dµk) + (Dµh)†(Dµh) + +
(
µ !L hhk† + H.c.

)
[
fij L̃iLjh† + gij (ec

R)
ieRjk† + H.c.

]
+ . . .

[1402.4491]

The mass scale µ !L breaks lepton number, and induces mν #= 0:
(
Mflavor

ν

)
ij = 16µ !L fia ma g∗ab Iab(r) mb fjb.

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 17 / 37
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R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 17 / 37

Few free parameters =⇒ rich experimental predictions
Nebot,et al [0711.0483]; Ohlsson, Schwetz, Zhang [0909.0455]; Herrero-Garcia, Nebot, Rius, et al [1402.4491]; + others

E.g., k±±, h± couplings to leptons encode oscillation physics

Normal ordering:

Inverse ordering:

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 18 / 37
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R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 18 / 37
Richard Ruiz
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Over past few years, the LHC has been established as an intense
(laboratory) source of TeV-scale neutrinos (ν) (a remarkable expt. achievement!)

1000 µm

Candidate LHC neutrino event from FASER’s pilot run

New programs (FASER, SND@LHC) now collecting ν-nucleus scattering data

ν"

"−

W+∗K+, D+, ... ν"

P

P s
A

W+

W+

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 32 / 37

... and used to calculate arbitrary high-pT processes

dσ(νA → #X) =
∑

f,k,Xn︸︷︷︸
inclusive

∆kk′︸︷︷︸
shower/RGE

⊗ fνf ⊗ fk′︸ ︷︷ ︸
PDF

⊗ dσ̂νfk′→Xn︸ ︷︷ ︸
hard scattering

+ O
(
Λ2+k

NP
Q2+k

)

︸ ︷︷ ︸
HT

s D+

νµ µ−

W+∗

A

µ+

νµ

c

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 34 / 37

... including BSM processes in mg5amc

s K−

νµ N

Z∗

A

µ−

νµ

s

R. Ruiz (IFJ PAN) LNV+LFV@LHC/FCC – νphys@IPPP 35 / 37

Lepton number/flavor violation

Richard Ruiz

New 𝜈s? 
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Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

VBF search – Final state [arXiv:2206.08956]

At nuclear experiments, neutrinoless double-� decays are probed considering
electrons in the final state
I Heavier leptons cannot be tested in low-energy nuclear experiments but can

be studied at colliders (arXiv:2012.09882)

First search for neutrinoless double-� decay involving muons

Final state characterised with
I Two SS muons (pT > 30 GeV; events with other leptons are vetoed)
I At least two jets (two leading jets are ⇠back-to-back with mjj > 750 GeV)

Data are collected using single-muon and dimuon triggers
I Correspond to 137 fb�1

Anne-Mazarine Lyon 6

Indirect searches at CMS

Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

VBF search – Interpretation [arXiv:2206.08956]

a. Majorana HNL process
I Results are interpreted in terms of upper limits at 95% CL on the total

mixing amplitude |VµN|
2

I HNL assumed to mix exclusively with the muon sector
I Limits are the most stringent constraints obtained at CMS for mN > 650 GeV

b. Weinberg operator process
I Observed 95% CL upper limit on mµµ is equal to 10.8 GeV
I Results improved with respect to limits set using the results from the NA62

experiment (arXiv:1905.07770), (arXiv:2012.09882)

Anne-Mazarine Lyon 9
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b. Weinberg operator process
I Observed 95% CL upper limit on mµµ is equal to 10.8 GeV
I Results improved with respect to limits set using the results from the NA62

experiment (arXiv:1905.07770), (arXiv:2012.09882)

Anne-Mazarine Lyon 9Not competitive 

Sensitive to dimension-7 operators 

Paper?

Anne-Mazarine Lyon
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Indirect searches at CMSOverview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

WHNL search – Process [arXiv:2402.18658]

First search at CMS for long-lived HNLs that decay in the muon chambers
I Large decay lengths accessible with this strategy: 0.1 < c⌧N < 10 m

HNL is produced in the decays of W bosons...
I Masses in the range 1 < mN < 4 GeV

... and decays inclusively

Events are triggered on the prompt lepton (electron or muon)
I Full Run 2 analysis: 138 fb�1

Signatures:
I A single prompt electron or muon
I A cluster in the muon chambers

Anne-Mazarine Lyon 12

Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

WHNL search – Interpretation [arXiv:2402.18658]

Results are interpreted as 95% CL upper exclusion limits on |V`N|2

I For both the Majorana and Dirac scenarios

Scenario in which the HNL mixes exclusively with one lepton family

Most stringent limits on |VeN|2for 2.1 < mN< 3.0 GeV

on
��VµN

��2for 1.9 < mN< 3.3 GeV

Anne-Mazarine Lyon 17
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Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

WHNL search – Interpretation [arXiv:2402.18658]

Results are interpreted as 95% CL lower exclusion limits on c⌧N for
mN = 1.5 GeV
I For both the Majorana and Dirac scenarios

Scenario in which the HNL can mix with different lepton families
I Mixing scenarios specified by the ratios f` ⌘ |V`N|

2/|VN|
2

I The condition fe+ fµ+ f⌧= 1 allows the values to be shown in the form of
ternary plots

Consistent with the constraints from neutrino oscillation data

Anne-Mazarine Lyon 18

Anne-Mazarine Lyon



16

Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

BHNL search – Process [arXiv:2403.04584]

First search for HNLs in B meson decays performed at a general-purpose
experiment at the LHC

Made possible thanks to the collection in 2018 of the B-parking data set
I 41.6 fb�1, O(1010) bb events
I Single-muon triggers with low pT and large displacement requirements

Inclusive leptonic and semileptonic decays of B±, B0, Bs, and Bc mesons
Perform a bump hunt in the `⇡ invariant mass spectrum
I Long-lived HNL that decays within the tracker volume
I Masses probed in the range 1 < mN < 3 GeV with unprecedented resolution

At least one lepton is a µ that fires a B-parking trigger line

Anne-Mazarine Lyon 20
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Overview

Indirect
VBF search

Outlook

Direct
WHNL search

BHNL search

Summary

Backup

BHNL search – Interpretation [arXiv:2403.04584]

Upper exclusion limits at 95% CL on |VN|2 are presented for the
muon-exclusive mixing scenario, for both the Majorana and Dirac hypotheses

I Most stringent limits obtained in the mass range 1 < mN < 1.7 GeV

Lower exclusion limits on c⌧N are presented for 66 different mixing scenarios
for mN = 1, 1.5, and 2 GeV

I First time that this type of constraints is presented for mN = 1, 2 GeV

Anne-Mazarine Lyon 28

Anne-Mazarine Lyon
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ATL-PHYS-PUB-2025-008 electron mixing muon mixing

⌅ Colliders currently provide strongest direct constraints for mN > mK

⌅ Unique sensitivity of ATLAS and CMS for mN > mZ

⌅ some analyses still in progress

⌅ LEP sensitivity is / will be exceeded by LHC by the end of Run 3 (electrons and muons)

Matthias Saimpert (CEA Saclay, IRFU/DPhP, France) New-⌫ Physics workshop 10/04/2025 18 / 19

ATLAS summary plots (electrons & muons)

Indirect searches at ATLAS

Matthias Siampert
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The 𝜈SMEFT

Motivation: neutrino masses

6

Of course, at non-renormalisable level, the minimal way to generate  
Majorana neutrino masses is via Weinberg dimension-5 operator


 


SMEFT accommodates lepton-number-violating neutrino masses


In what follows, we will assume

lepton number conservation (LNC)


or

lepton number violation (LNV) by 

new heavy physics exists at scale 


Under these assumptions,  should be present in the EFT 

 NSMEFT (also called !SMEFT, SMEFT, SMNEFT)

!LH = (LH̃) (H̃TLc) + h.c.

M ≲ v
Λ ≫ v

NR
⇒ NR

4-fermions and (almost) stable N
Dirac    or  Majorana    with   GeVν = (νL, NR)T N = (Nc

R, NR)T mN ≲ 0.1

10

New top decay

Alcaide, Banerjee, Chala, AT, 1905.11375

4-fermions and (almost) stable N

11



ATLAS, 1706.04786


 (monojet)

CMS, 1712.02345







PDG, RPP 2018




Alcaide, Banerjee, Chala, AT,  
1905.11375

pp → ℓ + Emiss
T

pp → j + Emiss
T

Γπ→e+inv = (310 ± 1) × 10−23 GeV

Γτ→e+inv = (4.03 ± 0.02) × 10−13 GeV

t → bℓ + inv

Alcaide, Banerjee, Chala, AT,  
1905.11375

Figure from J. Alcaide’s PhD thesis
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ATLAS, 1706.04786


 (monojet)

CMS, 1712.02345







PDG, RPP 2018


 @ HL-LHC

Alcaide, Banerjee, Chala, AT,  
1905.11375

pp → ℓ + Emiss
T

pp → j + Emiss
T

Γπ→e+inv = (310 ± 1) × 10−23 GeV

Γτ→e+inv = (4.03 ± 0.02) × 10−13 GeV

t → bℓ + inv

Arsenii Titov
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The 𝜈SMEFT

Higgs-N operators

   (for simplicity)

LEP, 90’s; PDG, RPP 2018
ℬ(Z → ννγ(γ)) ≲ 3 × 10−6 ⇒ set αNZ = αHN = 0

13

0�Higgs 1�Higgs 2�Higgs

O
1
DN

= N@
2/@N ONB = L�

µ⌫
NH̃Bµ⌫ , ONW = L�

µ⌫
N�IH̃W

I

µ⌫
OHN = N�

µ
N(H†

iDµH)

O
2
DN

= iB̃µ⌫(N�
µ
@
⌫
N) O

1
LN

= LND
2
H̃ , O2

LN
= L@µND

µ
H̃ O

2
NN

= Ni/@N(H†
H)

O
3
DN

= @
⌫
Bµ⌫(N�

µ
N) O

3
LN

= iL�
µ⌫
@µND⌫H̃ , O4

LN
= L(@2

N)H̃ OHNe = N�
µ
e(H̃†

iDµH)

3�Higgs: OLNH = LH̃N(H†
H)

Table 1: Relevant CP-even bosonic operators. The h.c. is implied when needed. For
example, O1

DN
= N@

2/@N + h.c. So all Wilson coe�cients are hermitian. The CP-odd
operators include iBµ⌫(N�

µ
@
⌫
N), iONB, iONW , iO1,2,3,4

LN
, iOLNH , iOHN and iOHNe [?].

1H ONB = L�
µ⌫
NH̃Bµ⌫ ONW = L�

µ⌫
N�IH̃W

I

µ⌫

2H OHN = N�
µ
N(H†

i
 !
DµH) OHNe = N�

µ
e(H̃†

iDµH)

3H OLNH = LH̃N(H†
H)

and 2. The ↵i represent Wilson coe�cients. As we enforce LN conservation, there are no
dimension-five operators.

In this work we are only interested in the CP-even sector of the theory. Therefore, in
good approximation we can assume that Yu = diag(yu, yc, yt), while Yd = diag(yd, ys, yb)
and Ye = diag(ye, yµ, y⌧ ) without loss of generality.

In good approximation we can also assume that there is no huge fine-tuning between
the operators entering into the expression for the neutrino mass, m⌫ ⇠ YNv�↵LNHv

3
/⇤2,

so in particular YN can be neglected 2. This also implies that lepton flavour is conserved
in L4. For simplicity we focus on the regime in which lepton flavour is also conserved in
the N sector of L6. As a consequence, the three lepton families factorise (in particular
they evolve independently under the RGEs). We can therefore ignore flavour indices for

2Even if, as we show below, ↵LNH is generated radiatively and therefore YN ⇠ g2v2/(16⇡2⇤2) to keep
m⌫ small, YN is of order . 10�4 for ⇤ = 1 TeV, and hence much smaller than even the muon Yukawa.

/L ONNNN = (N cN)(N cN)

/L & /B
OQQdN = (Qc✏Q)(dcN)

OuddN = (ucd)(dcN)

4

'NNH = (NcN) (H†H)
New Higgs decaysHiggs searches in h → γ(γ) + inv

Shape analysis: small signal on top of large background

14
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Butterworth, Chala, Englert, Spannowsky, AT, 1909.04665




@  HL-LHC with 

ℬ(h → γ + pmiss
T ) ∼ 1.2 × 10−4

ℬ(h → γγ + pmiss
T ) ∼ 4.2 × 10−5

ℒ = 3 ab−1

7

Operator
↵max ⇤min [TeV]

Channel
for ⇤ = 1 TeV for ↵ = 1

OLNH 4.2⇥ 10�3 15 h ! � + pmiss
T

ONNH 5.3⇥ 10�4 1900 h ! �� + pmiss
T

ONA 0.21 2.2 h ! �� + pmiss
T

TABLE I: Maximum (minimum) value of ↵ (⇤) for ⇤ =
1 TeV (↵ = 1) allowed by the proposed searches quoted in

the last column. We have assumed lepton flavour universality

in couplings to N .

pendently by setting the remaining two to zero. (Note
that any other choice would lead to a more stringent con-
straint.) The sensitivity at the high-luminosity LHC can
be read in Tab. I. We remind the reader that all these
prospects apply only if ↵NA/⇤2 & 0.001 � 0.1 TeV�2,
depending on mN ; see Fig. 2.

V. CONCLUSIONS

In summary, we have studied the phenomenology of
the SMEFT extended with a light RH neutrino N in the
regime in which the latter decays almost exclusively into
a photon and a neutrino.

Using low-energy and LHC data such as measurements
of the W , Z and Higgs bosons; bounds on neutrino dipole
moments, measurements of SM di↵erential distributions
at the LHC (as implemented in Contur [51]), as well
as searches for single photons with missing energy [43];
we have singled out those directions not yet constrained.
They include mostly operators triggering new Higgs de-
cays, namely h ! � + pmiss

T
and h ! �� + pmiss

T
.

We have subsequently provided new search strategies
to be performed at the LHC sensitive to the aforemen-
tioned processes. For order one couplings, we have shown
that, with 3 ab�1 of data, these analyses can potentially
unravel new physics at scales ⇤ . 2 TeV (2000 TeV)
for lepton number conserving (violating) operators. For
comparison, let us add that searches for h ! NN trig-
gered by ONNH , with N ! qq` are expected to test
scales as large as ⇠ 100 TeV [27]. Likewise, top de-
cays into b`N , mediated by four-fermion operators and
with N long-lived, have been shown to probe only ⇤ . 1
TeV [24].
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Appendix A: Model

Let us consider the SM extended with two vector-like
fermions XE ⇠ (1,2)1/2, XN ⇠ (1,1)1 and a singly-
charged scalar ' ⇠ (1,1)1. The numbers in parentheses
and the subindex represent the quantum numbers under
(SU(3)c, SU(2)L) and the hypercharge, respectively. We
also assume that these new fields are odd under a Z2

symmetry under which all SM fields as well as N are
even.

The new relevant Lagrangian reads

L = XE(i /D � MXE )XE + XN (i /D � MXN )XN

+ (Dµ')⇤(Dµ') � M2
'
'⇤' � �'H('⇤')(H†H)

+


gXXEH̃XN + gLXE'L + gNXN'N + h.c.

�
.

(A1)

Let us focus on the regime MXE , MXN , M' ⇠ M � v,
gN ⌧ gL, gX . The new particles can be integrated out
before EWSB by matching (o↵-shell) amplitudes in the
UV to the corresponding amplitudes in the EFT. One
can easily check that tree-level operators vanish.

Therefore, we concentrate first on the amplitude given
by the diagrams in Fig. 4. Using p2, p3 and p4 as inde-
pendent four-momenta (p1 = p2 + p3 + p4), and to first
order in pi we get:

Arsenii Titov
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4-fermion pair-N operators

15

ℒSd
= gdNdRNc

RSd + gueuRec
RSd + gQLQϵLcSd + h.c.

ℒSu
= guNuRNc

RSu + h.c.

ℒSQ
= gQNQNRSQ + gdLdRLϵSQ + h.c.

• HNLs are pair produced  
via pair-  operators


• Lightest HNL cannot decay  
via these operators; 
it decays via mixing

NR

Examples of UV completions

N

cqN

Λ2 =
g2

qN

2m2
Sq

, q = d, u, Q

Cottin, Helo, Hirsch, AT, Wang, 2105.13851

4-fermion pair-N operators at HL-LHC

17

Reach on active-heavy neutrino mixing (for fixed new physics scale)

Type-I Seesaw target region

AL3X: 250 fb
-1

MAPP1 : 30 fb
-1

ANUBIS: 3 ab
-1

MAPP2: 300 fb
-1

CODEX-b: 300 fb
-1

MATHUSLA: 3 ab
-1

FASER: 150 fb
-1

ATLAS: 300 fb
-1

FASER2: 3 ab
-1

ATLAS: 3 ab
-1

Λ = 7 TeV

Cottin, Helo, Hirsch, AT, Wang, 2105.13851

The 𝜈SMEFT

Arsenii Titov
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eV Sterile Neutrinos

22

Expected signature in KATRIN

sin2(θ)

Active 
Branch

m4 = 10 eV

Sterile Branch

ν

ν

Maximum likelihood fit of model for 3ν + 1 
includes two additional parameters in the fit: 
• m4: mass of the eV-sterile neutrino; 
• sin2θ: the mixing angle of the fourth neutrino. 
• mν: constrained to 0 or free

SM light (anti-)neutrino eV Sterile (anti-)neutrino

Several experimental anomalies: 
• Reactor Antineutrino Anomaly (RAA, ~3σ)  
• Gallium flux (~4σ)

Kink

Constraints from KATRIN
Results - mν=0

25
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Results - mν=0

• Almost excluded the allowed region 
with the Gallium anomaly except a 
small region. 

• A large section of the Reactor 
Antineutrino Anomaly was also 
excluded as exemplified. 

Pre-print available “Sterile-neutrino 
search based on 259 days of 
KATRIN data”, https://arxiv.org/abs/
2503.18667
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10−2 10−1 100
10−1

100

101

102

103

(e
V

)

DANSS
(95% C.L.)
Stereo
(95% C.L.)
Prospect
(95% C.L.)
BEST+GA

BEST+GA+SAGE
best fit
RAA
(95% C.L.)
Neutrino-4

KATRIN exclusion
KNM1-5 (95% C.L.)
KATRIN sensitivity
KNM1-5 (95% C.L.)
KATRIN exclusion
KNM1-2 (95% C.L.)

Claudio Silva

Differential Measurement

35

HIGH 
STATISTICS!

Systematic uncertainties must be 
carefully controlled! 
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Limits on heavy neutrinos

10

[2402.07993]

𝑇1/2
0𝜈 −1 =  𝑔𝐴

4 𝑉𝑢𝑑
2  𝐺01 𝒰𝑒𝑁

2 𝑀𝑁
𝑚𝑒

𝐴𝜈 𝑀𝑁

2

[Bolton, Deppisch, Dev 1912.03058]
https://www.hep.ucl.ac.uk/~pbolton/

Constraints from 0𝜈𝛽𝛽

Vaisakh Plakkot
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The “minimal” 3+2 type-I seesaw model

➢ Sterile mass matrix: 𝑀𝑀 =
ഥ𝑀 1 − 𝜇

2
0

0 ഥ𝑀 1 + 𝜇
2

➢ Five Majorana neutrinos; lightest neutrino massless

➢ 5 × 5 mixing matrix:

11

𝒰𝑒1 𝒰𝑒2 … … 𝒰𝑒5
𝒰𝜇1 … … … ⋯
… … … … …
… … … … …

𝒰𝑅21 … … … 𝒰𝑅25 5×5

𝑀𝜈 =
0 𝑚𝐷
𝑚𝐷
𝑇 𝑀𝑀

Relevant for 0𝜈𝛽𝛽

The “minimal” 3+2 type-I seesaw model

➢ Sterile mass matrix: 𝑀𝑀 =
ഥ𝑀 1 − 𝜇

2
0

0 ഥ𝑀 1 + 𝜇
2

➢ Five Majorana neutrinos; lightest neutrino massless

➢ 5 × 5 mixing matrix:

11

𝒰𝑒1 𝒰𝑒2 … … 𝒰𝑒5
𝒰𝜇1 … … … ⋯
… … … … …
… … … … …

𝒰𝑅21 … … … 𝒰𝑅25 5×5

𝑀𝜈 =
0 𝑚𝐷
𝑚𝐷
𝑇 𝑀𝑀

Relevant for 0𝜈𝛽𝛽

Probing the inverted mass ordering
➢ Next-gen experiments probe the IO band for 3 active neutrinos
→ No signal ⇒ some sort of cancellation between the SM and BSM neutrino 

contributions
→ Lower bound on 𝑈𝑒2 ≡ σ𝐼=4,5 |𝒰𝑒𝐼|

2

12

𝑇1/20𝜈
−1 ∝ 𝐴𝜈 0 

𝑖=1,2,3

𝒰𝑒𝑖
2 𝑚𝑖 + 

𝐼=4,5

𝒰𝑒𝐼
2 𝑀𝐼𝐴𝜈(𝑀𝐼)

2

The hunt is on

14

𝑇1/2
0𝜈 (136Xe) > 3.8 ⋅ 1028 y

[2407.10560]𝑈𝑒
2 = 𝒰𝑒4

2  + 𝒰𝑒5
2 

Constraints from 0𝜈𝛽𝛽

Vaisakh Plakkot
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Long-lived new 𝜈s

New-𝝂 Physics: From Colliders to Cosmology – Jelle Groot – 10-04-2025
8 / 16

Plan of Attack
What benchmark scenarios should we consider?

              Remember: 

Simplest case is the Type-II seesaw scenario:  
             .  No mixing between SM neutrinos and sterile neutrinos.

Free parameters:  RH gauge boson mass                     and mixing parameter        :        
                                                

                 
Mixing matrix: 

Small mixing angle:                                         with  

Motivation

Setting the scene

DV Calculations

0𝜈𝛽𝛽  lifetime

Conclusions

 

New-𝝂 Physics: From Colliders to Cosmology – Jelle Groot – 10-04-2025
7 / 16

Minimal Left-Right Symmetric Model

Required: SM symmetry group extension.

Elegant solution:   

What do we gain:   Right-handed fermion doublets  and gauge bosons

Essential:                     needs to break down to    

Extension of scalar section: Higgs bi-doublet and two scalar triplets               

At scale                              these scalar field acquire vevs.

Choose a generalized discrete symmetry that establishes the seesaw relations

   Reminder:
Motivation

Setting the scene

DV Calculations

0𝜈𝛽𝛽  lifetime

Conclusions

 

New-𝝂 Physics: From Colliders to Cosmology – Jelle Groot – 10-04-2025
9 / 16

Displaced-vertex calculations
Now we have set our scene, let’s do some calculations!

Sterile neutrino production: 
Branching ratios  of B-, D-,K- and 𝜋-mesons into sterile neutrinos.

Sterile neutrino decay rates: 
Possible final-state particle contents:

● Quarks: final-state mesons 
● SM leptons
● SM neutrinos (invisible)

Sterile neutrino decay lengths:
Are DV searches viable?

Motivation

Setting the scene

DV Calculations

0𝜈𝛽𝛽  lifetime

Conclusions

 

New-𝝂 Physics: From Colliders to Cosmology – Jelle Groot – 10-04-2025
14 / 16

Compare sensitivity reaches:     
Recast lifetimes, branching ratios and decay lengths.

Future 0𝜈𝛽𝛽  and DV experiments have competitive sensitivity reaches!

Motivation

Setting the scene

DV Calculations

0𝜈𝛽𝛽  lifetime

Conclusions

 

Jelle Groot
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Constraints from hadron decays

Tim Kretz - New-  constraints from hadron decaysν

 new physics contribution to  decayN B

▪ SM and NP sum incoherently  

▪ Sterile neutrinos described by four energy dimension-6 operators 

Ji = JSM
i + JNP

i ({gj})

7 10/04/25

ℋeff = 4GF

2
Vcb[(cLγμbL)(ℓLγμνℓ, L) + gN

VR
(cRγμbR)(ℓRγμNR) + gN

SL
(cRbL)(ℓLNR)

+gN
SR

(cLbR)(ℓLNR) + gN
T (cLσμνbR)(ℓLσμνNR) + h . c . ]

Robinson, Shakya and Zupan, 1807.04753 Tim Kretz - New-  constraints from hadron decaysν

Belle II Measurements

▪ Belle II measured these  coefficients: Ji

9 10/04/25

Hadronic recoil parameter: 

   w = m2
B + m2

D* − q2

2mBmD*

Normalized angular coefficient: 

   ̂J(n)
i =

∫Δw(n) dw Ji(w)

∫ wmax
wmin

dw dΓ
dw

Prim et al., 2310.20286

Tim Kretz - New-  constraints from hadron decaysν

Results

17 10/04/25

▪ Hint at sterile neutrino with a mass of mN = 354 MeV

Tim Kretz - New-  constraints from hadron decaysν

Results

18 10/04/25

Tim Kretz
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Constraints from W measurements
Formalism
• We work in νSMEFT.


• Operators contributing to :W → Ne

arXiv:1909.04665

•  and  give rise to parity conserving interactions, while  gives rise 
to a parity-violating V+A interaction - only this operator changes the 
kinematics of the  decays


• Thus we assume only  which gives rise to a  decay of width:

ci
LNH ci

NW ci
HNe

W

ci
HNe ≠ 0 W

Γ(W → eνR) = m3
wv2

48πΛ4 (ce
HNe)2

3

Motivation
Kinematics at LHC

• Valence quarks higher   W boosted in direction of valence quark


•  in RHN decays, charged lepton      more boosted in  case

pz ⇒

⇒ W+

less boosted in  caseW−

in  decays,    decays more transverse to enter detector for ⇒ νR νR W+

less transverse to enter detector for W−

 W mass artificially raised in  decays, artificially lowered in  decays⇒ W+ W−
8

Formalism
• We work in νSMEFT.


• Operators contributing to :W → Ne

arXiv:1909.04665

•  and  give rise to parity conserving interactions, while  gives rise 
to a parity-violating V+A interaction - only this operator changes the 
kinematics of the  decays


• Thus we assume only  which gives rise to a  decay of width:

ci
LNH ci

NW ci
HNe

W

ci
HNe ≠ 0 W

Γ(W → eνR) = m3
wv2

48πΛ4 (ce
HNe)2

3

Motivation

9
 distribution at CDFmT  distribution at ATLASmT

Sam Bates

Results
CMS Mass Fits

• Compare to 2024 CMS measurement


• Equivalent value at CMS is 



• Corresponds to 



• Combining ATLAS and CMS gives
, 95% CL 

assuming 

mW+ − mW− = 57 ± 30.3 MeV

|cHNe |v2/Λ2 = 0.28 ± 0.09

|cHNe | ∈ [0,0.27]
Λ = v

2412.13872 14
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Constraints from W measurements

Angular Observables (Atlas)

• There is a well documented variable, , such that 
 is highly correlated to  at high .


• This allows us to observe the decay angle in the W rest 
frame at high  using only transverse, lab frame 
quantities.


• Can be shown that  at 

high 

Lp
2Lp − 1 cos θH pW

T

pW
T

cos θH = 2 | ⃗pℓ | − EW

| ⃗pW |
≈ 2Lp − 1

pW
T

Lp = ⃗pℓ
T ⋅ ⃗pW

T

| ⃗pW
T |2

A Sparrow (2012), PhD thesis 18

Angular Observables (Atlas)
Sensitivity
• Despite the looser correlation, the 

highest sensitivity is achieved for
, which gives sensitivities 

of (for )


•  for  
at 95% CL


• Sensitivities are calculated by statistical 
uncertainty given by fitting SM 
pseudodata to SM+BSM simulations for 
different values of  at integrated 
luminosity of 4.7 fb-1.

pW
T > 50 GeV

Λ = v

cHNe = 0.090 (0.072) W− (W+)

μ

21

Sam Bates

Angular Observables (Atlas)
Sensitivity
• Despite the looser correlation, the 

highest sensitivity is achieved for
, which gives sensitivities 

of (for )


•  for  
at 95% CL


• Sensitivities are calculated by statistical 
uncertainty given by fitting SM 
pseudodata to SM+BSM simulations for 
different values of  at integrated 
luminosity of 4.7 fb-1.

pW
T > 50 GeV

Λ = v

cHNe = 0.090 (0.072) W− (W+)

μ

21

Angular Observables (Atlas)
W+, SM

19

Angular Observables (CDF)

• An ideal observable for detecting the 
difference between the SM and BSM 
decays would be 


•  is the final angle of one of the 
leptons in the Collins-Soper frame - a 
proxy for the W rest frame.


• However, our lack of knowledge of  
of the W means we may only 
reconstruct  up to a sign.

cos θCS

θCS

pZ

cos θCS

15

Need to compare to decay constraints
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Discovering new 𝜈s at the LHC
Displaced decay of HNL in gauged B-L framework

pp → h → NN, N → μjj
Gauged B-L model

Scalar S
Right handed neutrino N

Depends on h-S mixing

Production of N

Decay of N

Depends on active-sterile mixing

10 fb cross-section with mixing 0.1,  
and RHN mass ~ 40 GeV

Low MN ~ 3 body decays

Seesaw favoured region can be accessed at the LHC/HL-LHC

JHEP 08 (2018) 181 
       Deppisch, Liu, Mitra  

15

RHN decay can give rise to displaced decay signatures

Production vertex and decay vertex are separated

One of the most important  
probe of BSM physics

Final states are displaced muon and jets

Displaced decay of HNL in gauged B-L framework

pp → h → NN, N → μjj
Gauged B-L model

Scalar S
Right handed neutrino N

Depends on h-S mixing

Production of N

Decay of N

Depends on active-sterile mixing

10 fb cross-section with mixing 0.1,  
and RHN mass ~ 40 GeV

Low MN ~ 3 body decays

Seesaw favoured region can be accessed at the LHC/HL-LHC

JHEP 08 (2018) 181 
       Deppisch, Liu, Mitra  

15

RHN decay can give rise to displaced decay signatures

Production vertex and decay vertex are separated

One of the most important  
probe of BSM physics

Final states are displaced muon and jets

Displaced decay of HNL in gauged B-L framework

pp → h → NN, N → μjj
Gauged B-L model

Scalar S
Right handed neutrino N

Depends on h-S mixing

Production of N

Decay of N

Depends on active-sterile mixing

10 fb cross-section with mixing 0.1,  
and RHN mass ~ 40 GeV

Low MN ~ 3 body decays

Seesaw favoured region can be accessed at the LHC/HL-LHC

JHEP 08 (2018) 181 
       Deppisch, Liu, Mitra  

15

RHN decay can give rise to displaced decay signatures

Production vertex and decay vertex are separated

One of the most important  
probe of BSM physics

Final states are displaced muon and jets

Manimala Mitra
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Reinterpretation of LHC constraint for HNL search  (conservative approach?)

26

CMS collaboration, PRL120 (2018) 22, 221801 
(arXiv 1802.02965)

HEP data files, distributions, cut-efficiencies are not 
available for the above CMS search and the previous tri-
lepton+MET HNL searches 

JHEP 06 (2024) 123 involves information about  
    cut-efficiencies for few mass points. For high mass,  
    more informations required.  Informations about      
    distributions Fig 2,3,4 not available and validation is  
    difficult.  

Road Block??

Naive reinterpretation (although not most optimal!)

Active-sterile mixing from arXiv 1802.02965

Derive limit for T-I

T-I
T-II

Effect of cuts used in 3l+MET is missing

Discovering new 𝜈s at the LHC

Reinterpretation of LHC constraint for HNL search  (conservative approach?)

26

CMS collaboration, PRL120 (2018) 22, 221801 
(arXiv 1802.02965)

HEP data files, distributions, cut-efficiencies are not 
available for the above CMS search and the previous tri-
lepton+MET HNL searches 

JHEP 06 (2024) 123 involves information about  
    cut-efficiencies for few mass points. For high mass,  
    more informations required.  Informations about      
    distributions Fig 2,3,4 not available and validation is  
    difficult.  

Road Block??

Naive reinterpretation (although not most optimal!)

Active-sterile mixing from arXiv 1802.02965

Derive limit for T-I

T-I
T-II

Effect of cuts used in 3l+MET is missing

Reinterpretation of LHC constraint for HNL search  (conservative approach?)

26

CMS collaboration, PRL120 (2018) 22, 221801 
(arXiv 1802.02965)

HEP data files, distributions, cut-efficiencies are not 
available for the above CMS search and the previous tri-
lepton+MET HNL searches 

JHEP 06 (2024) 123 involves information about  
    cut-efficiencies for few mass points. For high mass,  
    more informations required.  Informations about      
    distributions Fig 2,3,4 not available and validation is  
    difficult.  

Road Block??

Naive reinterpretation (although not most optimal!)

Active-sterile mixing from arXiv 1802.02965

Derive limit for T-I

T-I
T-II

Effect of cuts used in 3l+MET is missingManimala Mitra

To follow up?
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Direct searches at ATLAS
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JHEP 01 (2019) 016
-1ATLAS Resolved 36 fb
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Resolved Observed

Muon channel , All limits at 95% CL-1 = 13 TeV, 139 fbs

ATLAS
Dirac scenario
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Electron channel , All limits at 95% CL-1 = 13 TeV, 139 fbs

ATLAS
Dirac scenario

Heavy right handed WR and NR

10

• No significant excess seen, set limits at 95% CL 
• Resolved and boosted channels not orthogonal and are not combined  
• Significant increase in sensitivity in Dirac and Majorana scenarios for 
e and µ coupling 

• Does not see the same ~3σ local excess observed by previous CMS 
search 

arXiv:2304.09553
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ATLAS
Majorana scenario
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ATLAS
Majorana scenario

Need to revisit  
Dirac scenario?

Margaret Lutz
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Direct searches at CMS

Haifa Sfar

HNL Review Paper

• CMS HNL review paper 

• Published last week! j.physrep 

• Including all CMS HNL results so 

far.  

• Not only TypeI!  

• Complementary searches.  

 No significant gain from stat. 

Combination.  

• Could extract best CMS contour.

→

13

HNLs in VBF 
Indirect search

Very Low mass 
sophisticated 
Techniques

Intermediate mass s-channel 
Displaced decay in Tracker volume

prompt 3ℓ

Exclusive  couplingμ

Exclusive  couplinge
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Direct searches at CMS

Haifa Sfar

Filling the gaps…

14

First search 
at very high mass in type-I seesaw

Only  
displaced leptons 

Shown

Would be nice to 
provide common 

Summary plot + ATLAS 
 

arxiv.2203.08039

Very low mass searches, exclude 
new extra parameters space 

At 1-2 GeV!

Overall improvement  of 
DELPHI’s + Belle’s boundaries!

Improve DELPHI  
results
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Filling the gaps…

16

Not only… New interpretation(incl. lifetime ) 
and possible 

Future combination …
New to the big picture

arxiv.2203.08039

Decay in muon syst. B-HNL

LL- Had

Prompt 3 ℓ

Direct searches at CMS

Haifa Sfar
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Testing the origin of 𝜈 masses

  

Coloma, JLP, Molina-Bueno, Urrea 2304.06765

ProtoDUNE in beam dump con�guration?

H. Amar, A. Chatterjee, C. Hasnip, W. Ketchum, L. Molina Bueno, D. Pullia, DUNE-DAQ...

https://indico.cern.ch/event/1460367/contributions/6240613/attachments/3001559/5289608/BSM@protoDUNE_NeutrinoWkshp_Animesh.pdf

https://indico.cern.ch/event/1381368/contributions/5963281/attachments/2888251/5062517/molina_LLP2024_2072024_v2.pdf

Neutrino candidate
detected during test
in summer 2024 

  

Coloma, JLP, Molina-Bueno, Urrea 2304.06765

ProtoDUNE in beam dump con�guration?

H. Amar, A. Chatterjee, C. Hasnip, W. Ketchum, L. Molina Bueno, D. Pullia, DUNE-DAQ...

https://indico.cern.ch/event/1460367/contributions/6240613/attachments/3001559/5289608/BSM@protoDUNE_NeutrinoWkshp_Animesh.pdf

https://indico.cern.ch/event/1381368/contributions/5963281/attachments/2888251/5062517/molina_LLP2024_2072024_v2.pdf

Neutrino candidate
detected during test
in summer 2024 

  

Simplest scenario: degenerate HNLs

FCC-ee + DUNE/T2HK

Hernandez, JLP, Rius, Sandner 2305.14427

● Measurement of CP violation in neutrino oscillations, HNL mass and mixing with 
electron, muon and tau flavours can suffice to pin down matter-antimatter asymmetry.

  

 HNLs 

 Testability Neutrino 

 Masses

  Baryon

Asymmetry

Hernandez, Kekic, JLP, Racker, Salvado 1606.06719
Hernandez, JLP, Rius, Sandner 2207.01651
Hernandez, JLP, Rius, Sandner 2305.14427

Jacobo Lopez-Pavon
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Cosmological constraints on 𝜈s 
How Massive νs ?

Mass and Ordering After DESI BAO

DESI 2025 — [arXiv:2503.14738]

• CMB+DESI-DR2:   

• Oscillation Experiments NO:  

• Oscillation Experiments IO:

∑ mν < 0.064 eV

∑ mν > 0.06 eV

∑ mν > 0.1 eV

William Giare

The total neutrino mass  impacts the CMB in various ways:

 
1) it boosts the late-time non-relativistic density, affecting the scale-angle 
relations on the last scattering surface and the late ISW effects. 
2) affects the non-relativistic transition of neutrinos by changing the pressure-to-
density ratio and causing metric fluctuations observable in the early ISW effect. 
3) it reduces weak lensing effects on the CMB by suppressing the matter 
power spectrum and CMB spectra at small scales.

∑ mν

How Massive νs ?

Early Universe Constraints

∑ mν < 0.24 eV  Planck - (TT TE EE) + lensing

Planck 2018 results. VI 
[arXiv:1807.06209]

Lower Peaks 
(early ISW)

Sift towards low-ℓ

Smearing at high-  
(lensing)

ℓ

Sift towards low-ℓ

Lower Peaks 
(early ISW)

Lower Peak 
(early ISW) Sift towards low-ℓ

Smearing at high-  
(lensing)

ℓ

Smearing at high-  
(lensing)

ℓ

How can we improve the CMB limit on Neutrinos? 

1) Neutrinos will become non-relativistic particles, contributing to the matter 
energy density at late times. Depending on their mass, they will alter cosmic 
distances, measured by BAO and, in part, Supernovae.


2) Neutrinos will suppress structure formation, affecting other local observables 
such as the matter power spectrum and weak lensing. We can examine the large-
scale structure of the Universe.

How Massive νs ?

Late Universe Constraints

WG, et. al— PRD 108 (2023) 10, 103539 • arXiv: 2307.14204 

Local probes are approaching a level of precision comparable to CMB.
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Light-Sterile Neutrinos

Eres = 5.73TeV ( 5g/cm3

ρ ) ( Δm2
41

1 eV2 )

Pμμ < 1

12

Abbasi et al. (IceCube), arXiv: 2405.08070

Ivan Martinez-Soler (IPPP)
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Other experiements (90% C.L.)

MINOS+

MB-SB (∫)

MB-SB (∫̄)

CDHS

CCFR

SuperK

Best Fit 
90% CL 
99% CL

This Result (10.7y)

eV sterile neutrinos lead to a disappearance in the 
atmospheric muon neutrino flux at the TeV scale

There is a slight preference for sterile neutrinos, 
which is in tension with other measurements

See Thomas Schwetz-Mangold, Claudio SilvaNew-𝜈 searches with Ice Cube 

Ivan Martinez Soler
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New-𝜈 summary 

Many new results, a wide survey of new-𝜈 physics 

Plenty of issues to follow up 

Thanks to all the speakers for the insightful talks! 




