LHCb Upgrade II – One Page Summary

- Flavour physics provides a unique probe for new physics, delivering sensitivity to new particles with masses much larger than those accessible with direct searches.
 - Flavour physics provides key guide to couplings and energy scale of new physics.
- LHCb Upgrade II offers unique opportunities in flavour: the experiment will study the largest samples of heavy-flavour hadrons of all current and proposed experiments in the coming decades.
- UK provides key leadership in LHCb.
 - 11 institutes, plus 2 more joining for Upgrade II.
 - 15% of authors in the collaboration.
 - Leadership at all levels of the collaboration in recent years.
- The UK is backing LHCb Upgrade II (£49.4M through UKRI infrastructure fund).
- The 2020 European strategy update recommended that "The full physics potential of the LHC and the HL-LHC, including the study of flavour physics and the quark-gluon plasma, should be exploited." The full-exploitation of the HL-LHC should remain our top priority. LHCb Upgrade II is crucial for delivering this recommendation.

W. Barter, on behalf of LHCb-UK

LHCb Upgrade II Physics

- Key physics deliverable: <u>unprecedented high-precision measurements of heavy flavour</u> <u>hadrons, providing clear sensitivity to new physics</u>.
- LHCb Upgrade II will collect at least 300 fb⁻¹ of data following installation in LS4.
 - Factor >10³ more b-hadrons produced in LHCb acceptance than at Belle II, and still factor >10² more than FCC-ee will produce operating at the Z pole. For final states composed of only charged tracks, LHCb will have much larger yields and lower backgrounds, and hence more precise measurements.
 - LHCb can also study all species of beauty hadron and has unique capability in heavyflavour spectroscopy.
- Most measurements expected to improve by ~one order of magnitude in precision over current results.
- Detailed numbers available in <u>Upgrade II physics case</u>.

Flavour Physics Projections for LHCb Upgrade II

• Key improvements across heavy-flavour physics.

<u>Every measurement</u> provides a key test of the Standard Model and probes potential new physics.

	Current	Upgrade I		Upgrade II	Other experiments with potential
Observable	(up to 9 fb^{-1})	(23 fb^{-1})	(50 fb^{-1})	(300 fb^{-1})	to compete with LHCb precision
γ	2.8°	1.3°	0.8°	0.3°	LHCb unmatched
Tests of CKM matrix $ V_{ub} / V_{cb} $	6%	3%	2%	1%	Belle-2, FCC-ee
and CPV in the SM $\phi^{car{c}s}_s(B^0_s o J/\psi\phi)$	$20 \mathrm{\ mrad}$	$12 \mathrm{\ mrad}$	$8 \mathrm{\ mrad}$	$3 \mathrm{\ mrad}$	$\mathbf{ATLAS,\ CMS}$
$\phi_s^{s\bar{s}s}(B^0_s o \phi \phi)$	69 mrad	$39 \mathrm{\ mrad}$	26 mrad	$11 \mathrm{mrad}$	LHCb unmatched
Exploration of the ΔA_{CP}	29×10^{-5}	13×10^{-5}	8×10^{-5}	3.3×10^{-5}	LHCb unmatched
• A _E	11×10^{-5}	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}	LHCb unmatched
Charm sector Δx	18×10^{-5}	$6.3 imes 10^{-5}$	4.1×10^{-5}	1.6×10^{-5}	LHCb unmatched
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	69%	41%	27%	11%	ATLAS, CMS
Rare Decays $S_{\mu\mu}(B^0_s \rightarrow \mu^+\mu^-)$				0.2	ATLAS , CMS
$A_T^{(2)}(B^0 \to K^{*0}e^+e^-)$	0.1	0.060	0.043	0.016	FCC-ee?
$S_{\phi\gamma}(B^0_s o \phi\gamma)$	0.32	0.093	0.062	0.025	$\mathbf{FCC}\text{-}\mathbf{ee}?$
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$+0.17 \\ -0.29$	0.148	0.097	0.038	FCC-ee?

• LHCb provides unique access to many key flavour physics observables on the timescale of the next 20 years and beyond.

LHCb Upgrade II Physics and Detector

- LHCb also offers unique/exciting opportunities beyond flavour:
 - BSM physics (e.g. sensitivity to low mass dark photons improved by 1-3 orders of magnitude compared to current limits).
 - SM measurements that provide important complementary information to those at ATLAS and CMS (e.g. W boson mass, weak mixing angle).
 - Conventional and exotic hadron spectroscopy.
 - Heavy Ion Physics (unique potential to probe quark-gluon plasma due to capability to reconstruct beauty and charm hadrons at all centralities).
- LHCb Upgrade II will also drive development of technology and skills:
 - Instantaneous luminosity of LHCb increased by an order of magnitude compared to current running conditions.
 - LHCb Upgrade II provides a bridge to projects at future accelerators.
 - Hardware: upgraded subdetectors typically require fast timing and high granularity.
 - Software: Run 3 demonstrates LHCb can deliver offline-quality reconstruction in near-realtime. Upgrade II requires scaling this to significantly more challenging operating conditions.

W. Barter, on behalf of LHCb-UK

Requested Further Information

- Estimate of financial costs:
 - FTDR Baseline Construction Cost 175M CHF; scoping document currently with LHCC.
 - Current annual operation costs for LHCb: overall LHCb Cat A M&O budget currently ~3 MCHF; power ~0.2 MCHF.
- Environmental cost of construction and operation per year:
 - LHCb Upgrade II was first CERN project to include dedicated environmental study in <u>FTDR</u>, and has a dedicated lead (Heinrich Schindler) on sustainability.
 - Key drivers of LHCb environmental impact are gas emission. Reductions are envisaged eg through use of low global warming potential radiators and different gas mixtures. Overall HL-LHC also clearly important for Upgrade II environmental impact.
 - Operational contribution of LHCb is ~4400 tonnes CO₂ equivalent per year in Run 3 [more details <u>here</u>]. LHCb currently makes a few % contribution to overall CERN Scope 1 emissions.
- Does your project plan dedicated submission(s) for the ESPPU (if so, give details).
 - Yes central LHCb submissions planned for early 2025.
 - Submission expected to include at least four documents: Discovery potential; Technology developments (including sustainability); Heavy ion physics; Software and Computing.

W. Barter, on behalf of LHCb-UK